
AMAZON CLOUDWATCH
MONITORING GUIDE

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

2

How to Use This Ebook
Welcome to a deep dive on Amazon CloudWatch and how to use it to monitor your
AWS infrastructure! This book mostly focuses on individual AWS services and how
to monitor them, but the first couple of sections are a primer on CloudWatch and
CloudWatch alarms. Even if you’ve used CloudWatch before, we encourage you to read
the intro sections, as they are the foundation of the topics discussed throughout the
rest of the ebook.

Table of Content

What is CloudWatch?				 3

A Guide to CloudWatch Alarms		 5

CloudWatch for EC2				 10

CloudWatch for EBS				 12

CloudWatch for ELB				 16

CloudWatch for Lambda		 	 20

CloudWatch for DynamoDB		 23

CloudWatch for RDS				 27

CloudWatch for SQS				 31

CloudWatch for Kinesis			 35

Next Steps						 39

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

3

What is CloudWatch?

Amazon CloudWatch monitors your Amazon Web Services (AWS)
resources. Essentially, CloudWatch is an archive built to store AWS metrics’
time series data. CloudWatch converts raw data feeds into digestible,
actionable information. Amazon provides a set of pre-defined metrics in
CloudWatch for free. The free tier also lets you view these metrics.

Their paid service allows you to access, graph, create dashboards, and
send alerts for all metrics—including your own custom metrics—through the
console, command line, or API.

Important CloudWatch Concepts
This section explains some of the basic CloudWatch concepts that will be critical to
understand before continuing with the rest of this guide.

Namespaces
A namespace is a container for metrics that belong to a service. For example, all EC2
metrics are grouped into the AWS/EC2 namespace.

Dimensions
A dimension is a set of metadata key-value pairs that help identify a metric. Examples
include identifying an SQS queue with the QueueName dimension, or identifying a Lambda
function by FunctionName.

Metrics
Metrics are the core of CloudWatch. Each metric is a time series data set published from
an AWS service to CloudWatch. When querying for a metric, you supply a namespace,
metric name, and any dimensions necessary to identify the resource that published the
metric. CloudWatch then responds with a set of data points that are a timestamp mapped
to the value of the metric at that time. Each metric has a period, or an amount of time over
which the metric is aggregated.

CloudWatch retains metric data as follows:
	• Data points with a period of less than 60 seconds are available for 3 hours
	• Data points with a period of 1 minute are available for 15 days
	• Data points with a period of 5 minutes are available for 63 days
	• Data points with a period of 1 hour are available for 455 days (15 months)

https://www.bluematador.com/
https://aws.amazon.com/cloudwatch/pricing/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

4

Statistics
Statistics are aggregated values of metrics. When querying CloudWatch, you will have to
choose which statistic you would like. CloudWatch supports the following statistics:

	• Minimum - the smallest value during the aggregation period
	• Maximum - the highest value during the aggregation period
	• Average - the average value during the aggregation period
	• Sum - the sum of all reported values during the aggregation period
	• SampleCount - the number of data points published to CloudWatch during the

aggregation period
	• pNN.NN - the value of the specified percentile (with up to 2 decimal points of

precision), for example p90 is the value of the 90th percentile for the data points
within the aggregation period

Not all statistics are supported for every metric.

Period
When specifying the statistic, you will also have to choose the aggregation period,
which will usually be the metric granularity provided by the service publishing data to
CloudWatch. Valid values for period are 1, 5, 10, 30, and any multiple of 60 up to 86,400
seconds (1 day). The default value is 60.

Alarms
CloudWatch allows you to create an alarm when the value of a metric’s statistic crosses a
threshold. These alarms can then notify your on-call team via Amazon SNS.	

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

5

A Guide to CloudWatch Alarms
CloudWatch alarms allow you to get notified of events in your AWS infrastructure by
monitoring a particular metric for when it crosses a configured threshold. CloudWatch
alarms are AWS’s built-in way to alert you when your infrastructure is unhealthy.

How to Approximate Anomaly Detection in
CloudWatch
Infrastructure resources differ from each other based on their purpose. For example, one
ELB may have different load than another, making it difficult to find a single threshold
to alert on for all ELBs. This problem is further compounded as they also fluctuate in
their usage, which means a threshold that might be healthy on a Monday morning could
be unhealthy on a Saturday evening. To combat this issue, many monitoring tools use
anomaly detection to find what looks healthy for your resource and then alert only when it
deviates from this norm.

However, CloudWatch doesn’t support true anomaly detection, so you’ll have to use
averages to find issues. To do so, you’ll want to look at a week of data for a metric and
then determine the average high and low. Create a 10% window above the average high
and below the average low and you have a good threshold for what looks healthy for
your application. It should be noted that this method will not account for any time based
variation or seasonality in data.

CloudWatch also supports the Percentile statistic on some metrics, but we don’t use this
for a number of reasons:

1.	 It isn’t supported across all services, so it’s difficult to build a monitoring strategy
around it.

2.	 It works by finding the percentile within the values inside of a metric’s period. So it
would find the nth percentile across a minute of metrics, or five minutes of metrics,
which can be spikey.

For these reasons, we find it more effective to use the method described above to create
thresholds for CloudWatch alarms. Throughout the rest of this ebook, when we refer to the
“approximate anomaly detection method,” we mean this method.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

6

How to Create a CloudWatch Alarm
CloudWatch alarms are created from the CloudWatch console. To do so:

1.	 Navigate to the CloudWatch console.
2.	 Click on Create Alarm.

3.	 Click on Select Metric and type the name of the metric you’d like to monitor into the
search box.

4.	 Choose the metric for the resource you’re going to monitor. This will plot the
selected metric on the graph. CloudWatch only allows you to create an alarm on a
single metric. However, if you want to add another metric to use for reference, you
can click on the All Metrics tab and follow Step 3 again to find another metric, or
use the bread crumbs to move up a category. In the next section, we’ll discuss how
to combine multiple metrics into a single value through Metric Math Expressions.
For now, look at a 1 week graph to determine what threshold to use.
Click Select Metric.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

7

5.	 Name and describe your alarm. Choose something that will help you know what’s
going on if you were to receive the alarm without any context.

6.	 Configure your thresholds. You can use the threshold you picked at the end of
Step 4. You will also need to pick how many data points need to cross the threshold
before alerting. If the metric you’d like to monitor is reported on a 1 minute period,
choose 3 or 4 out of 5 data points. This means it will take up to 5 minutes for the
alarm to trigger, but also helps you avoid false positives or spikes that lead to alert
fatigue. If you find that the alert still triggers too frequently, try raising the threshold
or requiring more unhealthy data points (i.e. 5/5 or 8/10 data points). With metrics
that have a 5 minute period, you will need to balance how long you can wait to be
alerted with how sensitive you want the alarm to be, but a good starting point is to
require 2 out of 5 data points to be unhealthy.

7.	 Choose what to do when data is missing. You can choose to treat missing data as

follows:
a.	 Good (resolve any existing alarm)
b.	 Bad (create an alarm)
c.	 Missing (get more data points and evaluate the most recent existing data)
d.	 Ignore (do not change alarm state)

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

8

The best option depends on the metric, but in general, we advise choosing
Ignore and maintaining alarm states.

8.	 Set up notifications for the alarm. Notifications can be sent through SNS, and from
there, to any number of services

9.	 Click Create Alarm.

At this point, your CloudWatch alarm is now active. Unfortunately, since CloudWatch only
supports creating an alarm on a single metric and threshold, you’ll have to repeat the
whole process for each resource and metric combination. Additionally, if you want to set
an alarm on both an upper and lower bound for a metric, you’ll have to create two alarms
for the metric.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

9

How to Create Alarms on Computed Values
Sometimes you will want to monitor a value that is not directly reported by CloudWatch. It
might be the case that multiple metrics can be combined to produce the necessary value.
For these situations, you can use Metric Math Expressions in your CloudWatch alarms. To
create a Metric Math Expression do the following:

1.	 Choose the metrics you need in the All Metrics tab.
2.	 Navigate to the Graphed Metrics tab.
3.	 Click on the link that says Add a math expression.

CloudWatch will then add an additional value to your Graphed Metrics tab. To rename the
expression so you have a more readable name in the graph legend, double click on its label
and type in the desired name.

Next, edit the math expression in the Details column. For the most part, the math
expression language is pretty straight forward. You perform arithmetic on the metrics
you’ve selected by referencing their value in the Id column of the table. For example, the
expression m1 * 5 would result in a graph of the original m1 metric with each data point
value multiplied by 5. Things get more interesting when you start combining metrics:

In this example, we add the DiskReadOps and DiskWriteOps metrics for an EC2 instance
together to get a timeseries view of the total number of disk operations. CloudWatch
comes with a big list of functions you can use to experiment with metric math.

https://www.bluematador.com/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html#metric-math-syntax

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

10

CloudWatch for EC2
Amazon Elastic Cloud Compute (EC2) allows you to spin up servers for
your application without having to actually manage physical hardware.
In this section, we’ll explain how to use CloudWatch to monitor EC2 and
which metrics are important to watch.

How to View CloudWatch Metrics for EC2
CloudWatch metrics for EC2 can be viewed through the Metrics portion of CloudWatch, but
it is also possible to use the Monitoring tab in the Instances section of the EC2 console.
This tab shows several metric graphs for each instance.

Metrics to Monitor

A Note on Metric Granularity
By default, EC2 reports metrics to CloudWatch in 5 minute intervals. However, if you
enable enhanced monitoring for an instance, you’ll be able to get metrics in 1 minute
intervals (though there is an additional cost). If your application has higher performance
requirements, it may be worth the money to get more data so you can react more quickly to
changes in your application.

NetworkIn, NetworkOut, NetworkPacketsIn, &
NetworkPacketsOut
A sharp increase or decrease in your instance’s network traffic is typically a good
indication that the instance is unhealthy or about to become unhealthy. It’s one of the best
ways to detect abnormal application behavior. The NetworkIn and NetworkOut metrics
measure network traffic in bytes, while NetworkPacketsIn and NetworkPacketsOut measure
traffic in number of packets. You should create CloudWatch alarms for each of these
metrics using the approximate anomaly detection method with the Average statistic,
looking for at least 2 data points of anomalous values (unless you’ve enabled enhanced
metrics, in which case, you can look for 5 data points).

https://www.bluematador.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-cloudwatch-new.html

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

11

CPUCreditBalance
Some EC2 instance types support CPU Credit Balance, which allows them to temporarily
burst above the baseline CPU threshold for the instance type. The CPUCreditBalance metric
measures the current CPU Credit Balance for an instance. This metric is a good one to
monitor because when the credit balance is depleted, it is a sure sign that your instance
is using too much CPU. To monitor it, create a CloudWatch alarm for when the Average
statistic goes below 25% of the instance type’s maximum CPU Credit Balance.

CPUUtilization
In CloudWatch, CPUUtilization measures the percent of total CPU being used by the
instance. While anomalous CPUUtilization can signal issues in your instance, the metric
also has a tendency to fluctuate and should be used more for correlation than detection
of critical issues (CPUCreditBalance is a good way to monitor CPU issues for instance
types with CPU credits). However, it can still be useful to create a CloudWatch alarm on the
Average statistic using the approximate anomaly detection method and have notifications
sent to a lower priority notification method.

StatusCheckFailed
The StatusCheckFailed metric measures if your instance has failed its Instance or System
status checks in the last minute (it is available at minutely granularity even if enhanced
monitoring is not enabled on the instance). If your instance is failing its status checks
for more than one datapoint, it needs to be troubleshooted immediately. To monitor
SystemCheckFailed, create a CloudWatch alarm for the Sum statistic for values greater
than 0 for 2 data points.

DiskReadOps, DiskWriteOps, DiskReadBytes, &
DiskWriteBytes
Like network traffic, disk IO is a good indication of the health of your instance.
Unfortunately, EC2 measures disk metrics only for instance types that have instance
storage. If your instance type has instance storage (in the table it will list the amount, and
not just “EBS only”), you can follow the approximate anomaly detection method to create
CloudWatch alarms on the Average statistic of each metric. Otherwise, use the metrics in
the EBS section of this book to monitor the attached volumes.

Keep in mind that these metrics only measure disk performance for instance storage, so
even if your instance has instance storage, you will still have to monitor any additional
EBS volumes you’ve attached to the instance. You will also need to use another solution
to monitor actual disk space used on your file systems, as this metric is not available in
CloudWatch.

https://www.bluematador.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html#burstable-performance-instances-credit-table
https://www.ec2instances.info/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

12

CloudWatch for EBS
Amazon Elastic Block Store (EBS) allows you to provision storage
volumes for your EC2 instances without having to actually manage
physical drives. In this section, we’ll explain how to use CloudWatch
to monitor EBS and which metrics are important to watch. EBS reports
metrics at 5 minute granularity.

How to View CloudWatch Metrics for EBS
CloudWatch metrics for EBS can be viewed through the Metrics portion of CloudWatch,
but it is also possible to use the Monitoring tab in the Volumes section of the EC2 console.
This tab shows several metric graphs for each volume.

Metrics to Watch

A Note about Volume Types
EBS has the following volume types:

	• General Purpose SSD (gp2)
	• Provisioned IOPS SSD (io1)
	• Throughput Optimized HDD (st1)
	• Cold HDD (sc1)

Some metrics are not available based on volume type. We will indicate that this is the case
if applicable in each metric’s section.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

13

VolumeReadOps & VolumeWriteOps
VolumeReadOps and VolumeWriteOps measure the number of read and write operations on
a volume. In most cases, it’s probably not valuable to monitor these metrics for anomalies,
as disk reads can be a little spikey. However, if the volume is attached to a cache, disk
access should be infrequent, so you should create a CloudWatch alarm on the Sum
statistic using the approximate anomaly detection method.

Otherwise, you’ll want to create a CloudWatch alarm to alert you if you are approaching
the IOPS limit for your volume type. To do so, first calculate the IOPS limit for your volume
based on volume type:

	• io1: the amount you’ve set
	• gp2: the minimum of 3 * volume capacity (in GB) and 16,000
	• sc1: 300
	• st1: 500

Next, when choosing the metric for your alarm, create a Metric Math Expression that sums
the VolumeReadOps and VolumeWriteOps and then select only the result. Then set your
threshold for when that combination is greater than 90% of your limit.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

14

VolumeTotalReadTime & VolumeTotalWriteTime
VolumeTotalReadTime and VolumeTotalWriteTime measure the total amount of time spent
in read or write operations on the volume. By themselves, they are not particularly valuable,
but can be used to calculate the disk latency for your volume. Latency is calculated with
the following formula:

(VolumeTotalReadTime + VolumeTotalWriteTime) / (VolumeReadOps + VolumeWriteOps)

To monitor latency, you should create a CloudWatch alarm by using the approximate
anomaly detection method on your calculated latency metric, using the Sum statistic for all
metrics in the formula.

VolumeQueueLength
VolumeQueueLength measures the number of disk operations queued. When this metric
spikes, access to your disk will slow and your application performance may suffer.
However, monitoring your volume for a queue size greater than 0 is not desirable, as it
suggests you expect your volume to sit idle all of the time. Instead, create a CloudWatch
alarm on VolumeQueueLength with the Average statistic using the approximate anomaly
detection method.

https://www.bluematador.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/benchmark_procedures.html#UnderstandingQueueLength

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

15

VolumeThroughputPercentage
VolumeThroughputPercentage measures the percent of the provisioned IOPS for your
volume that your volume is actually getting. It does not measure the amount of IOPS
actually being consumed on the volume. AWS expects volumes to be within 10% of
their provisioned limit for 99.9% of the year, but it can be helpful to monitor this metric
for correlation with other issues you are seeing in your application. To do so, create a
CloudWatch alarm on VolumeThroughputPercentage on the Average statistic for values
less than 90%. Send this notification to a lower priority notification method.

This metric only applies to io1 volume types.

BurstBalance
Because gp2 volumes don’t have provisioned IOPS, they have a Burst Balance that allows
them to temporarily perform more operations. The BurstBalance metric measures the
remaining percentage of the Burst Balance for your volume. Consistently using the Burst
Balance is a sign that you need to upgrade your volume and you should monitor for this
condition. Create a CloudWatch alarm on BurstBalance for the Average statistic for values
less than 25% that happen for more than 3 data points (5 minutes each).

This metric applies to gp2, st1, and sc1 volume types.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

16

CloudWatch for ELB
Amazon Elastic Load Balancing (ELB) allows you to create load
balancers for your application without having to actually manage the
servers that do the load balancing. In this section, we’ll explain how to
use CloudWatch to monitor Elastic Load Balancing and what metrics are
important to watch. ELB metrics are reported on 1 minute intervals.

How to View CloudWatch Metrics for
Elastic Load Balancing
CloudWatch metrics for Elastic Load Balancing can be viewed through the Metrics portion
of CloudWatch, but it is also possible to use the Monitoring tab in the Load Balancer
section of the EC2 console. This tab shows several metric graphs for each ELB.

Metrics to Watch

A Note about Load Balancer Types
Elastic Load Balancing has the following load balancer types:

	• Classic Load Balancer
	• Application Load Balancer
	• Network Load Balancer

Some metrics are not available based on load balancer type, or may have different names.
We will indicate which types are applicable in the headers of each metric.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

17

UnHealthyHostCount (Classic, Application, and Network)
One of the most obvious metrics to monitor is the number of hosts in a load balancer that
are failing their health checks. If an instance is failing health checks it is unable to serve
traffic.

To monitor UnHealthyHostCount, you should create a CloudWatch alarm on the Average
statistic. However, the threshold depends on the number of hosts in your load balancer.
If you have 5 or less, you should probably be alerted whenever UnHealthyHostCount is
nonzero. Otherwise, you will have to determine what is reasonable for your application,
but a good rule of thumb is no more than 20% of your hosts should be unhealthy.
Unfortunately, this is further complicated if you have set up autoscaling, as CloudWatch
has no notion of time based alarms. You will just have to use the scaled down threshold.

If you’re using application load balancers, keep in mind that CloudWatch reports the metric
for each load balancer/target group combination, so you’ll have to create a CloudWatch
alarm for each target group.

RequestCount (Classic and Application)
RequestCount measures the number of requests made to the ELB. A surge or drop the
number of requests could signal an issue in clients that are calling your load balancer. It
could also mean your ELB is returning many errors and clients are retrying.

To monitor RequestCount, you’ll be looking for anomalies. Create a CloudWatch alarm
on the Sum statistic using the approximate anomaly detection method for whenever
RequestCount exceeds the determined threshold for more than 5 data points.

HTTPCode_Backend_5XX (Classic) & HTTPCode_
Target_5XX_Count (Application)
Both Classic Load Balancers and Application Load Balancers have a metric for 5xx errors
returned by the hosts behind the load balancers. If you see a sudden spike in this metric, it
is a clear indication that something is wrong in your application.

However, because some number of 5xx errors are expected in any distributed system,
you’ll need to use the approximate anomaly detection method to detect issues in your
system. Again, you’ll use the Sum statistic to create the CloudWatch alarm.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

18

HTTPCode_Backend_4XX (Classic) & HTTPCode_
Target_4XX_Count (Application)
Both Classic Load Balancers and Application Load Balancers have a metric for 4xx errors
returned by the hosts behind the load balancers. If you see a sudden spike in this metric,
you likely have an issue in clients making requests to your load balancer.

However, because some number of 4xx errors are expected in any distributed system,
you’ll need to use the approximate anomaly detection method to detect issues in your
system. Again, you’ll use the Sum statistic to create the CloudWatch alarm.

Latency (Classic) & TargetResponseTime (Application)
CloudWatch measures the amount of time it takes for your hosts to return a response
through the load balancer with the Latency or TargetResponseTime metrics. If response
time increases drastically, it almost certainly means there are issues in your application.
These types of errors are especially important to detect because they cascade through
services as your clients spend longer waiting on resources they request from the load
balancer.

Once again, anomaly detection is the best way to monitor this metric. Use the approximate
anomaly detection method to detect spikes in latency. This time, use the Average statistic
for CloudWatch alarm creation.

BackendConnectionErrors (Classic) &
TargetConnectionErrorCount (Application)
The BackendConnectionErrors metric is incremented whenever your ELB is unable to
connect to the hosts backing the load balancer. If this is happening consistently, your
hosts are likely overloaded and unable to accept connections, or traffic may be routed to a
port that is not open.
While random connection errors can occur, if this value is consistently nonzero, you should
know about it. Create a CloudWatch alarm on the Sum statistic when this metric is nonzero
for 5 consecutive data points.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

19

SurgeQueueLength (Classic)
The surge queue length is the number of pending requests to a healthy instance in a
classic load balancer. When the number of requests exceeds the maximum of 1,024, they
will be rejected. As such, it’s a good idea to keep an eye on your surge queue length and
ensure that you have enough instances backing your load balancer to handle your load.

To monitor SurgeQueueLength, create a CloudWatch alarm on the Maximum statistic to
alert you when SurgeQueueLength exceeds 768 (75% of the max) for 5 consecutive data
points. If your application is very performance constrained, you’ll probably want to have
a stricter alarm, either by lowering the threshold or by checking for nonzero values over a
longer timespan like 15 minutes.

ProcessedBytes (Application and Network)
ProcessedBytes measures the number of bytes processed by the ELB. An anomalous
amount can signal issues in your application, but is best used in correlation with other
metrics. As such, you probably shouldn’t send alarms for this metric to your on-call team.
However, it can be useful to still create a CloudWatch alarm for the Sum statistic using the
approximate anomaly detection method and have the notifications sent to an informational
notification method.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

20

CloudWatch for Lambda
Amazon Lambda is a serverless execution environment that allows you
to run code based on triggers. It integrates with a large number of other
AWS services. CloudWatch Metrics and CloudWatch Logs are most
useful for monitoring the service. We’ll explain how to use them and
what metrics are important to watch. Lambda metrics are reported on 1
minute intervals.

How to View CloudWatch Metrics for
Lambda
CloudWatch metrics for Lambda can be viewed through the Metrics portion of
CloudWatch, but it is also possible to use the Monitoring tab in the Lambda function UI.
This tab shows several metric graphs for each function.

How to Use CloudWatch Logs with Lambda
When you spot an anomaly in a metric, it may not always be immediately apparent what
caused the problem. When this is the case, logging is helpful to gain insight on the
application level of what might be the root cause. You should add log statements to your
function that will help you find where things are going wrong.

For this purpose, CloudWatch Logs allow you to emit log messages in your functions that
are then stored in CloudWatch.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

21

Each of the programming languages supported by Lambda have some sort of logging
functionality, whether that’s Node.js’s console.log or Java’s LambdaLogger.log .. Here is
a list of documentation on how to send logs in each of the supported languages:

	• Node.js
	• Python
	• Java
	• Go
	• C#
	• Powershell

Once you’ve started writing log messages in your function, there are a number of ways to
check them. The easiest is probably just to run your function from the AWS web console.
Log messages are printed in the execution results.

You can also view all logs for your function in CloudWatch. Select Logs out of the menu on
the left and then choose the Log Group that contains the name of your function. Within the

log group, you’ll be able to access log messages emitted by your function.

Metrics to Watch

Invocations
The Invocations metric measures the number of times your function is invoked. This
metric is particularly important to watch as it has a direct effect on your AWS costs. It’s
not uncommon to hear about Lambda users who run up big bills when a bug causes their
invocations to get out of control. Therefore, it’s important to be watching this metric for
spikes so you can shut it down before things get out of hand. Set a CloudWatch alarm on
the Sum statistic using the approximate anomaly detection method.

https://www.bluematador.com/
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/python-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/java-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/go-programming-model-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/dotnet-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/powershell-logging.html

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

22

Errors
The Errors metric is incremented any time your function fails to run successfully.
Obviously, it’s important to know if your function is failing due to errors. To calculate the
error rate of your function, divide Errors by Invocation.

The most useful statistic for this metric is Sum. You might be tempted to set your
CloudWatch alarm to alert when there are any errors at all (ie, setting the threshold to 0),
but it’s often the case that with distributed systems a small number of errors is normal.
Use the approximate anomaly detection method to determine a good threshold.

If you want to monitor the error rate, you can use a Metric Math Expression. To do so,
add both Errors and Invocations to your CloudWatch alarm, and create a Metric Math
Expression that divides Errors by Invocations. Name that expression Error Rate and select
that metric.

Duration
Duration measures how long it takes to run your function in milliseconds. Functions can
timeout, and the longer your functions run, the more you’ll be charged, so you’ll want
this metric to be as low as possible. To set a CloudWatch alarm for this metric, use the
approximate anomaly detection method on the Average statistic. For functions with a
relatively low timeout, you may also want to monitor when the average Duration gets within
90% of the timeout.

Throttles
Finally, the Throttles metric measures the number of times your function is throttled. This
happens when you hit the concurrency limit for your account. If you’re having issues with
throttling, check out our blog post on the subject. It contains all the information you’ll need
to fix the problem.

The most useful statistic for this metric is Sum. Set a CloudWatch alarm for any time this
value is above 0. If your Lambda function is being throttled, you should take action to avoid
using up your concurrency allocation.

https://www.bluematador.com/
https://www.bluematador.com/blog/why-aws-lambda-throttles-functions

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

23

CloudWatch for DynamoDB
Amazon DynamoDB is a key-value and document database that allows
you to easily scale to huge numbers of records with single digit
millisecond performance. In this section, we’ll explain how to use
CloudWatch to monitor DynamoDB and what is important to watch.

CloudWatch aggregates the following DynamoDB metrics at1 minute
intervals:

	• ConditionalCheckFailedRequests
	• ConsumedReadCapacityUnits
	• ConsumedWriteCapacityUnits
	• ReadThrottleEvents
	• ReturnedBytes
	• ReturnedItemCount
	• ReturnedRecordsCount
	• SuccessfulRequestLatency
	• SystemErrors
	• TimeToLiveDeletedItemCount
	• ThrottledRequests
	• UserErrors
	• WriteThrottleEvents

For all other DynamoDB metrics, the aggregation granularity is 5 minutes.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

24

How to View CloudWatch Metrics for DynamoDB
CloudWatch metrics for DynamoDB can be viewed through the Metrics portion of
CloudWatch, but it is also possible to use the Metrics tab in the DynamoDB Table console.
This tab shows several metric graphs for each table.

Metrics to Watch

UserErrors
The UserErrors metric is incremented each time DynamoDB responds with a 400 HTTP
error. Causes for this include invalid query parameters, trying to access a table or index
that does not exist, or permissions errors. As such, any nonzero value for this metric
represents an actionable issue. When you detect UserErrors are nonzero, check for any
code releases or config changes that might have broken your queries.

To monitor UserErrors, create a CloudWatch Alarm to alert you whenever the Sum statistic
of this metric is greater than 0. Be aware that this metric is found under the Account
Metrics section of DynamoDB metrics as they are not associated with a particular table.

https://www.bluematador.com/
https://docs.google.com/document/d/1E0A5azQHgnVnMkFnWskUPU0PWI5H7K6NvglKD-mE25A/edit#heading=h.tas0livd6p1w

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

25

SystemErrors
The SystemErrors metric is incremented each time DynamoDB responds with a 500 HTTP
error. This metric means that the DynamoDB service is experiencing internal errors,
which can be correlated with issues you are seeing in the rest of your application. Your
application should be designed to retry requests to DynamoDB with exponential backoff to
handle this situation.

When monitoring SystemErrors, you should create a CloudWatch alarm whenever
SystemErrors is nonzero, but these alarms should be more informational, and not sent to
your on-call team. That’s because consistent SystemErrors are useful to know about so
you can handle the results in the rest of your application, but are not directly actionable.
Instead, your application should be designed to retry calls to DynamoDB. Be aware that
this metric is found under the Account Metrics section of DynamoDB metrics as they are
not associated with a particular table.

ConsumedReadCapacityUnits &
ConsumedWriteCapacityUnits
DynamoDB tables can be configured with a provisioned amount of Read Capacity Units
(RCU) and Write Capacity Units (WCU) that are consumed whenever you read from or write
to your table. When you consistently exceed either amount, your request will be throttled.
As such, it’s important to monitor the amount of RCU and WCU you are using to minimize
throttling.

To do so, set CloudWatch alarms for ConsumedReadCapacityUnits and
ConsumedWriteCapacityUnits when their Average statistic is greater than than 80% of your
provisioned limit for more than 10 data points. This will allow you to determine that you are
consistently close to the limit and give you time to provision more RCU or WCU as needed.
Additionally, CloudWatch is unable to detect when you add more provisioned RCUs or
WCUs, so you’ll have to update your alarms if you ever change your capacity.

If you have set up Auto Scaling with DynamoDB, you will have already created CloudWatch
alarms that result in scaling RCU or WCU, but may want to create additional alarms to
detect when your DynamoDB tables are scaled to the highest amount you’ve set with Auto
Scaling.

https://www.bluematador.com/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

26

ThrottledRequests
ThrottledRequests is incremented any time any part of a request to a table is throttled.
This metric is a good catchall for throttling, as it encompasses both reads and writes. This
metric is particularly important to monitor, as any throttle potentially represents a failure
in your application or an inability to save data. For a detailed explanation of throttling in
DynamoDB and how to troubleshoot it, refer to our guide on the subject.

Despite its importance, monitoring ThrottledRequests is not as simple as creating an alert
for any nonzero value. Because of the way DynamoDB partitions your data, a small number
of throttle events (where part of a batch request fails, but not the whole request) are
normal, and your application should be able to simply retry the events that failed.

Therefore, to monitor ThrottledRequests, you’ll be looking for anomalies. Create a
CloudWatch alarm on the Sum statistic using the approximate anomaly detection method
for the metric whenever ThrottledRequests exceeds the determined threshold for more
than 5 data points. Because CloudWatch separates ThrottledRequests by operation, you’ll
need to use a Metric Math Expression to create an alert on all throttles in aggregate. To do
so, select the following operations when creating the alarm:

•	 PutItem
•	 DeleteItem
•	 UpdateItem
•	 GetItem
•	 BatchGetItem
•	 Query
•	 BatchWriteItem

Add them all together by using the expression SUM(METRICS()).

What about ReadThrottleEvents or WriteThrottleEvents?
ReadThrottleEvents and WriteThrottleEvents are normal occurrences in DynamoDB if
you are using batch operations. Your application needs to be able to handle retries for
individual events that fail in your batch operations. It seems like these would be good
metrics to monitor, but it turns out that if either of these two metrics occur for a request,
ThrottledRequests will also be incremented, but only once, making it a better indication of
failing requests.

https://www.bluematador.com/
https://www.bluematador.com/docs/troubleshooting/aws-dynamo-throttling

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

27

CloudWatch for RDS
Amazon Relational Database Service (RDS) allows you to store your
application data in databases without having to actually manage the
servers the databases are hosted on. It also allows you to easily set up
read replicas and take snapshots of your database. In this section, we’ll
explain how to use CloudWatch to monitor RDS and what metrics are
important to watch. RDS metrics are reported on 1 minute intervals.

How to View CloudWatch Metrics
CloudWatch metrics for RDS can be viewed through the Metrics portion of CloudWatch,
but it is also possible to use the Monitoring tab in the RDS console. This tab shows several
metric graphs for each database.

Metrics to Watch

FreeableMemory
RDS’s FreeableMemory metric refers to the amount of unused memory on a database
instance. When this metric gets low, the OS of the database instance may begin to start
swapping memory in and out of swap space. This will result in significantly slower reads
and make your database unable to respond to requests.

To monitor FreeableMemory you should create a CloudWatch alarm on the metric’s
Average statistic that fires when you go below 100MB of free memory.

https://www.bluematador.com/
https://docs.google.com/document/d/1ARxUdpjeK8AexJVBH14V1b--zxRTHk0eYYDO2rkhVcU/edit#alarms

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

28

DatabaseConnections
RDS’s DatabaseConnections metric measures the number of connections to your database
instance. An anomalous number of connections can hint at unexpected behavior in your
application. More importantly, reaching the maximum number of connections for your
database can also cause new connections to be rejected.

Because the number of collections allowed depends on the size of your db instance type,
to monitor DatabaseConnections you should first determine the maximum number of
connections for your database. Then create a CloudWatch alarm to alert you when you go
over 95% of that value for the Average statistic.

Deadlocks (Aurora Only)
If you are using the Amazon Aurora database engine, you’ll have access to the Deadlocks
metric. A deadlock occurs when two or more transactions hold locks that each other
require. Deadlocks are resolved by aborting one of the transactions and allowing the
others to complete, which may have an adverse effect on your application. If you have
consistent deadlocks, you will need to examine the queries you’re making to find the
source of deadlocks.

To monitor Deadlocks, just create a CloudWatch alarm on the Sum statistic that alerts you
when there are any deadlocks in your database. To avoid being too spammy, you’ll want to
configure the alert to only fire when at least 5 consecutive data points are greater than 0
(that is, it’s happening consistently for 5 minutes).

https://www.bluematador.com/
https://stackoverflow.com/questions/39705700/value-of-max-connections-in-aws-rds
https://stackoverflow.com/questions/39705700/value-of-max-connections-in-aws-rds

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

29

ReplicaLag
RDS’s ReplicaLag metric measures the number of seconds a replica is behind the primary
instance. If your replica gets too far behind the primary and the primary experiences a
failure, your replica will be missing data that was in the primary instance.

To monitor ReplicaLag, create a CloudWatch alarm on the Maximum statistic to alert you
when your replica gets too far behind. You’ll need to decide how much lag is acceptable for
your application, but we recommend no more than 30 seconds. Like Deadlocks, you’ll want
this alert to only fire after at least 5 consecutive data points are over the threshold to avoid
alert fatigue for temporary spikes.

NetworkReceiveThroughput & NetworkTransmitThroughput
NetworkReceiveThroughput and NetworkTransmitThroughput refer to the number of
bytes sent to and from your database, respectively. A sharp spike or drop in either
metric could signal that your application is querying your database in an unexpected
way, or no longer is querying the database. To monitor NetworkReceiveThroughput and
NetworkTransmitThroughput, create CloudWatch alarms on the Average statistic using
the approximate anomaly detection method for when 5 consecutive data points are
anomalous.

ReadThroughput & WriteThroughput
ReadThroughput and WriteThroughput are similar to the network IO metrics except for disk
IO. A spike in reads could signal a RDS taking a snapshot, and a spike in writes could hint
at expensive table modifications. To monitor ReadThroughput and WriteThroughput, create
CloudWatch alarms on the Average statistic using the approximate anomaly detection
method for when 5 consecutive data points are anomalous.

CPUUtilization
CPUUtilization tracks the percent of CPU the database instance is using. While an excellent
indicator of an overworked database, it tends to fluctuate a lot and can lead to noisy alerts.
The key to CPUUtilization is to look for sustained high CPU. To monitor CPUUtilization,
create a CloudWatch alarm on the Average statistic using the approximate anomaly
detection method for when 15 consecutive data points are anomalous.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

30

SelectLatency, SelectThroughput, CommitLatency, &
CommitThroughput
These Aurora only metrics measure the latency for your queries as well as the actual
operation counts. Keeping an eye on these metrics can help you correlate issues you
may see in your application. To monitor them, create CloudWatch alarms on the Average
statistic using the approximate anomaly detection method for when 5 consecutive data
points are anomalous.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

31

CloudWatch for SQS
Amazon Simple Queue Service (SQS) allows you to send and receive
huge numbers of messages from a queue using a simple API. Without
setting up any infrastructure, you can have a distributed and fault
tolerant queuing system. In this section, we’ll explain how to use
CloudWatch to monitor SQS and what metrics are important to watch.
SQS metrics are reported on 5 minute intervals.

How to View CloudWatch Metrics
CloudWatch metrics for SQS can be viewed through the Metrics portion of CloudWatch,
but it is also possible to use the Monitoring tab in the SQS console. This tab shows several
metric graphs for each queue.

Metrics to Watch

The Metric Delay Problem
CloudWatch metrics for SQS are only available at a 5 minute granularity. What’s worse,
these metrics often have 10-15 minutes of latency, which means that you will not be able
to detect an issue in SQS when it actually happens. Because this is the case, if you need to
know about issues immediately, you should monitor the producers and consumers of SQS
messages in addition to SQS itself.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

32

NumberOfMessagesSent
One of the simplest metrics to watch in CloudWatch is NumberOfMessagesSent. This
metric measures the number of messages enqueued in a 5 minute interval. It can be
useful for determining the health of the systems sending data to SQS. Watch this metric to
make sure your producer doesn’t suddenly start sending more messages, or stop sending
messages completely.

To monitor NumberOfMessagesSent, you should look at its graph in CloudWatch for the
Sum statistic and use the approximate anomaly detection method to determine a healthy
baseline. Then create a CloudWatch alarm on the threshold.

Why Not Use NumberOfMessagesDeleted or NumberOfMessagesReceived?
At first glance, it would seem that you want to monitor NumberOfMessagesReceived
to make sure that all messages are being read from the queue, and
NumberOfMessagesDeleted to ensure that they are being successfully processed.
However, doing so would create CloudWatch alarms that are identical to the ones for
NumberOfMessagesSent. To illustrate why this is a problem, consider the case when your
producer unexpectedly stops. You immediately get an alert for NumberOfMessagesSent.
Shortly after, when your consumers have cleared out your queue, you will get an alerts for
NumberOfMessagesReceived and NumberOfMessagesDeleted. You already knew about
the root problem, but were still notified two more times. Instead, we recommend using
ApproximateAgeOfOldestMessage.

Additionally, we’ve found that when deleting a message from a queue, CloudWatch records
the NumberOfMessagesDeleted at the creation time of the message, rather than the time
you deleted the message, which is not useful for real-time monitoring.

ApproximateAgeOfOldestMessage
ApproximateAgeOfOldestMessage measures the number of seconds since the creation of
the oldest message in the queue. This metric is effective because if it creeps up, it means
that messages are not being processed quickly enough. If you don’t have a redrive policy
set for your queue, it also alerts you to messages that your consumers can’t handle and
that are stuck in your queue. For young messages (that is, the oldest message in the queue
was added recently), this metric is not guaranteed to be very accurate.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

33

To monitor ApproximateAgeOfOldestMessage, view the CloudWatch graph for the metric
(using the Maximum statistic) to determine a healthy baseline for your queue. If you
typically read messages as soon as they come in, the threshold should be close to zero. If
you have a more bursty workload, find the average time it takes to clear out the queue and
then set your threshold 10% above that. Then create a CloudWatch alarm for when it goes
over the threshold you determine.

Additionally, you’ll want to set an alarm when ApproximateAgeOfOldestMessage gets close
to the retention period you set when configuring the queue. If a message gets too old, it
will be discarded from the queue and you will lose that data.

ApproximateNumberOfMessagesNotVisible
Inflight messages are the messages that have been received by a consumer, but have not
been deleted or failed. In other words, they are actively being processed. For a standard
SQS queue, there is a limit of 120,000 inflight messages, and 20,000 is the limit for FIFO
queues. It’s important to keep an eye on this limit because if you exceed it, you will be
unable to process more messages until you reduce the number of inflight messages.

To monitor for this situation, watch the ApproximateNumberOfMessagesNotVisible metric
by creating a CloudWatch alarm that alerts when the Maximum statistic exceeds 110,000
messages for a standard queue or 18,000 for FIFO queues.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

34

SentMessageSize
When you create your queue, you configure a maximum message size that ranges from
1 to 256 KB. If you exceed that, your message will be rejected. As such, it’s a good idea
to watch SentMessageSize to check for messages that approach the maximum message
size.

When monitoring SentMessageSize, there are two strategies. If your application cannot
tolerate any rejected messages, you’ll want to set a CloudWatch alarm for when the
Maximum statistic approaches your configured maximum message size. This won’t
actually catch the messages that go over the max message size (since those would be
rejected and would not be recorded), but will catch messages that areclose to the limit,
giving you an indication that there may be something wrong. If you just need to keep
messages from failing generally, do the same with the Average statistic.

ApproximateNumberOfMessagesVisible for Dead Letter
Queues
When a message repeatedly fails to be processed, it can be sent to a configured Dead
Letter Queue (DLQ). Unfortunately, in many cases DLQs are forgotten about and messages
sent there disappear into the void. To avoid this problem, you’ll need to watch the
ApproximateNumberOfMessagesVisible metric for the DLQ. Just set a CloudWatch alarm
for when the Sum statistic exceeds 0 on the queue for 2 data points.

Why Not Use NumberOfMessagesSent?
You might be wondering why we can’t just use the NumberOfMessagesSent metric that we
used before to detect messages in the DLQ. Unfortunately, in a somewhat counterintuitive
way, messages being sent to the DLQ as a result of failing in the original queue do not
increment the NumberOfMessagesSent metric for the DLQ.

https://www.bluematador.com/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

35

CloudWatch for Kinesis
Amazon Kinesis is a service that allows you to process streaming data
at scale. It lets you maintain multiple iterators and shards your data
for you. In this section, we’ll describe how to monitor Kinesis with
CloudWatch and what metrics are important to watch. Kinesis metrics
are reported on 1 minute intervals.

How to View CloudWatch Metrics
CloudWatch metrics for SQS can be viewed through the Metrics portion of CloudWatch, but
it is also possible to use the Monitoring tab in the Kinesis console. This tab shows several
metric graphs for each stream.

Basic vs Enhanced Level Monitoring
CloudWatch can provide two levels of metric granularity, basic and enhanced. By default,
a Kinesis stream has basic level granularity enabled, which means CloudWatch will collect
metrics for the stream as a whole, and not for individual shards that make up the stream.
To get shard level metrics, you will need to use the EnableEnhancedMonitoring API to turn
on enhanced granularity for a stream. Using this API, you can select which metrics you’d
like to enable enhanced monitoring for your stream.

https://www.bluematador.com/
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_EnableEnhancedMonitoring.html

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

36

You can enable enhanced monitoring for the following metrics:
•	 IncomingBytes
•	 IncomingRecords
•	 OutgoingBytes
•	 OutgoingRecords
•	 WriteProvisionedThroughputExceeded
•	 ReadProvisionedThroughputExceeded
•	 IteratorAgeMilliseconds

You can also access enhanced monitoring through the Kinesis stream UI. To do so, select
your stream from the list of streams in the Kinesis console and expand the section labeled
Shard level metrics.

Why Enable Enhanced Monitoring?
Enhanced monitoring is useful for determining when your shards are not being evenly
utilized. If any shards deviate significantly from the average, you should assess the
evenness of your partition key’s distribution. Even if your partition keys are designed to
be evenly distributed, there are times when you can have “hot” or “cold” shards. In these
cases, you should split over-utilized shards and merge under-utilized shards.

Why Shouldn’t I Always Enable Enhanced Monitoring?
Basic level monitoring is included for free with Kinesis, but each metric you enable will
be charged as a custom metric in CloudWatch. Each stream has 7 metrics that can be
enabled, meaning each stream could cost $2.10/mo to monitor with enhanced monitoring.
If you enabled enhanced monitoring on all metrics for all your streams it can get expensive
quickly, especially if you aren’t using the data.

Metrics to Watch

Gotchas to Look out for
When using the Kinesis metrics in CloudWatch, you’ll need to be aware that some statistics
do not behave in an intuitive way. In some cases, the Average, Minimum, and Maximum
statistics for a metric will apply to only individual API calls, rather than values across the
stream at that point in time. Take, for example, the Average statistic for IncomingRecords.
Rather than getting the average number of records put to the stream for a time period, you
would get the average size of the batches of records sent to the Kinesis stream. Similarly,
Minimum would return the smallest batch size, and Maximum would return the largest.

https://www.bluematador.com/
https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-resharding-split.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-resharding-merge.html
https://aws.amazon.com/cloudwatch/pricing/

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

37

This applies to the following list of metrics:
•	 GetRecords.Bytes
•	 GetRecords.Records
•	 IncomingBytes
•	 IncomingRecords
•	 SubscribeToShardEvent.Bytes	
•	 SubscribeToShardEvent.Records

GetRecords.IteratorAgeMilliseconds
GetRecords.IteratorAgeMilliseconds measures the difference between the age of the
last record consumed and the latest record put to the stream. This metric is particularly
important to monitor because having too high of an iterator age in relation to your stream’s
retention period can cause you to lose data as records expire from the stream. AWS
recommends that this value should never exceed 50% of your stream retention; when you
get to 100% of your stream retention, data will be lost. Monitor the Maximum statistic to
make sure none of your shards ever approach this limit.

If you are getting behind, a temporary stopgap is to increase the retention time of your
stream; the real solution is to add more consumers to keep up with the rate at which data
is being put to your stream.

ReadProvisionedThroughputExceeded
When your consumers exceed your provisioned read throughput (determined by the
number of shards you have), they will be throttled and you won’t be able to read from the
stream. This can start backing up your stream.

If you find that you are being consistently throttled, you will have to add more shards to
your stream to increase your provisioned read throughput. If adding more shards doesn’t
lower the number of throttles, you may have a “hot” shard that is being read from more
than others. Enable enhanced monitoring, find the “hot” shard, and split it.

To monitor ReadProvisionedThroughputExceeded, use the approximate anomaly detection
method to create a CloudWatch alarm for the Average statistic. Ideally, you should try to
get this value as close to 0 as possible.

https://www.bluematador.com/
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html

Amazon CloudWatch Monitoring Guide
Learn more: bluematador.com

38

WriteProvisionedThroughputExceeded
When your producers exceed your provisioned write throughput (determined by the number
of shards you have), they will be throttled and you won’t be able to put records to the
stream. To fix consistent throttling, you will have to add shards to your stream. This will
raise your provisioned write throughput and keep you from being throttled in the future.

To monitor WriteProvisionedThroughputExceeded, create a CloudWatch alarm using the
approximate anomaly detection method on the Average statistic to help you to determine
if your producers are healthy.

PutRecord.Success, PutRecords.Success
PutRecord.Success and PutRecords.Success are incremented whenever your producers
succeed to send data to your stream. Monitoring for spikes or drops can help you monitor
the health of your producers and help you catch problems early. You’ll want to create a
CloudWatch alarm on the Average statistic using the approximate anomaly detection
method for whichever of the two API calls you use (because CloudWatch splits the two
APIs into two different metrics).

GetRecords.Success
GetRecords.Success is the consumer-side corollary to PutRecords.Success. As such,
looking for spikes or drops in this metric will allow you to ensure your consumers
are healthy and let you catch problems early. Create a CloudWatch alarm using the
approximate anomaly detection method with the Average statistic for this purpose.

https://www.bluematador.com/
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html

Now that you know how to use CloudWatch to monitor your
AWS infrastructure, take a look at Blue Matador.

As you’ve seen from reading this book, it can be error prone and tedious to set up
CloudWatch monitoring for all your resources (and remembering to do it for newly created
resources is tough!). Even after you get your alarms set up, your resource utilization will
continue to change, so expect to spend time tweaking thresholds.
					
Instead, take the manual work and toil out of monitoring and use Blue Matador.

Next Steps

•	 Quickly identifies every resource, every service,
and every server

•	 Automatically creates hundreds of alarms
out-of-the-box without any configuration

•	 Proactively notifies of any potential issues

•	 Dynamically updates alarms as your AWS
environments scales and evolves

After a fast onboarding, Blue Matador:

RUN APPLICATIONS WITH CONFIDENCE
WITH BLUE MATADOR, YOU WON’T MISS ANYTHING.

START YOUR FREE TRIAL

https://app.bluematador.com/ur/register
https://app.bluematador.com/ur/register

