
The cheap, easy way
to deploy an app to AWS

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

ii

There are a million things to do when you’re deploying an app to AWS. If you’re
launching this app for the very first time, you might think you have a laundry list
of items you must tick off before your app can be successful.

We’re here to tell you that’s just not true. By jumping the gun, you’ll be wasting
resources on stuff you just don’t need yet.

In this ebook, we’ll list what you MUST do and what you don’t need to do yet as
you’re launching your app for the first time.

Hopefully, we can help you save a bunch of time and effort—and maybe even
some cash, too—and you’ll still have a running, fully functional app.

About Blue Matador
Blue Matador is easy, out-of-the-box AWS cloud monitoring.

Set up Blue Matador in about 5 minutes and start getting valuable insights about
your AWS cloud infrastructure immediately. Super-fast setup, super-fast results.

Learn more about how it works on our website.

Introduction

https://www.bluematador.com/
https://www.bluematador.com/how-it-works

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

iii

Table of contents

Introduction ii

Step 1: Prepare 1

Is AWS the right call for your app? 1

What you need to know about your app first 2

Choosing your AWS services 3
AWS compute services 3
AWS database services 3
AWS content delivery services 4
Other important AWS stuff 4

Making sure your app is compliant 4
Personally identifiable information (PII) 5
Payment Card Industry Data Security Standard (PCI DSS) 5
General Data Protection Regulation (GDPR) 6
Privacy policies and terms and conditions 7

Special actions that might be irreversible 7
Encryption 7
Privacy policy tips from the Better Business Bureau 7
EBS volume provisioning 9
Security keys 11
Separate AWS accounts 12
Reproducibility 12

How to prep for the future 13
Request AWS service quotas now 13
Set up VPC 13
Pick a region and services 13

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

iv

Table of contents

Vendor vs. open-source services 14

Step 2: Secure 15

Take the security assessment in the AWS IAM console. 15
Delete your root access keys. 15
Activate MFA on your root account. 15
Create individual IAM users. 16
Use groups to assign permissions. 16
Apply an IAM password policy. 16

Set up private subnets in VPC. 17
Bastion hosts 17

Step 3: Run 20

Testing 20
DNS explained 20
How to make Route 53 authoritative 21
Hosted zones and DNS records 22
How to use Amazon Route 53 23
Other Route 53 features 24

Serving static assets 25

Load balancing 25

Database migrations 25

Step 4: Optimize 26

Starting with automation 26

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

v

Table of contents

AWS cost management vs. availability 26

Disaster prevention and recovery 27
S3 27
EC2 instances and EBS volumes 27
RDS 27
DynamoDB 27
SQS and Kinesis 27
Everything else 28

Configuration management 28

Step 5: Monitor 29

The cheap option 29

The easy option 29

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

1

To be honest, this is the hardest part, and thus this chapter will be the longest.
But if you make sure you have all your ducks in a row early on, you should be well
prepared for success.

Let’s dive in.

Is AWS the right call for your app?
Long story short: yes.

There are a few other options out there, but they are dwarfed in size and capa-
bility by Amazon. AWS covers compute, database, IoT, analytics, DevOps, CDN,
access controls, and more. It has over 175 services. And in terms of spread,
it has 22 regions (with 5 more announced at the time we write this), including
GovCloud, which is specifically for U.S. government software, covering 6 conti-
nents, 70 availability zones, and 205 edge locations.

That said, not all services are provided in all regions, and the prices vary, so
choose carefully.

Step 1: Prepare

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

2

What you need to know about your app first
It’s wise to know your app back to front before you start implementing anything.
Here’s a checklist to help you take stock of everything you need to deploy.

For server-side applications:

 How is the application built?

 Is there a script to release and run the application?

 What ports need to be open?

 What services does this application rely on?

 What configuration does it need?

 Can it work behind a load balancer?

 What libraries or local packages does it need?

 Does it have cron jobs, background jobs, or scheduled maintenance?

 What compute infrastructure was it built for? Serverless, containers, or virtual machines?

 If EC2, does the operating system matter?

 Is there a minimum memory requirement?

 Are there any health checks or health endpoints to call?

 Are there any special release instructions from any other developers?

Other stuff to think about:

 What databases (type and version) do you need?

 Are there any static files to serve?

 What domain names and subdomains will you use, and where will they go?

 Do you own the domain names already?

 Is there already an AWS account set up?

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

3

Choosing your AWS services
Here are most of the services you’ll likely need, short of those specific to
your application.

AWS compute services
 • Amazon Elastic Compute Cloud (EC2) / Virtual Private Cloud (VPC). These are your

standard virtual Amazon Elastic Compute Cloud (EC2) machines and the default
option. In general, if you use one, you’ll use both. EC2 is the compute for servers,
disks, IP addresses, load balancers, and firewalls, whereas VPC is the networking
layer for EC2.

 • AWS Elastic Beanstalk / Amazon Lightsail. Beanstalk is Amazon’s app deployment
service and is compatible with a wide variety of languages and servers. Lightsail is
one of the easiest-to-use AWS cloud platforms. It’s great for devs just starting in the
cloud or who have simple workloads.

 • AWS Lambda / Application Gateway. This option is gaining in popularity, but to use
this pair, you have to have built your application for it specifically, so if you didn’t...
well, you’ll have to choose different compute services. Lambda is the place your
code runs, and Application Gateway is your load balancer.

 • Amazon Elastic Kubernetes Service (EKS) / Amazon Elastic Container Service
(ECS) / AWS Fargate. To use these services, your application must have been built
in containers. Container services are a good next choice if you don’t want to use
EC2. ECS is the old-school container option, EKS is hosted Kubernetes, and Fargate
is a mix of the two. If you’re using containers and haven’t chosen which container
infrastructure to run on yet, choose EKS.

AWS database services
 • Amazon Relational Database Service (RDS). RDS is a fully managed cloud data-

base service that supports MySQL, Postgres, MariaDB, SQL Server, Oracle, and the
AWS cloud-native database Aurora. At this point, you should know which engine you
need, and it’s probably not worth changing it. If you use MySQL, consider Aurora—
it’s faster, built for AWS, and fully MySQL compliant.

 • Amazon DynamoDB. Globally distributed and available, fully managed NoSQL
database. If you need NoSQL, this is probably what you’re looking for.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

4

 • Amazon Elasticsearch Service. Fully managed Elasticsearch cluster. If your applica-
tion uses Elasticsearch, you could roll your own cluster or use this managed one.

AWS content delivery services
 • Amazon Simple Storage Service (S3). S3 is Amazon’s cloud object storage service.

You’ll use this one, no doubt about it. It’s great for hosting HTML, Javascript, and
CSS. Also great for getting file uploads, PDFs, and large documents out of your
database.

 • Amazon Route 53. Another one you’ll definitely use. Amazon Route 53 is your
managed DNS. If you already bought your domain from some other provider, and
they offer free DNS, switch to Route53. It’s $1 per month and integrates much better
with AWS services (which stands to reason).

 • AWS Certificate Manager. This one you might not have considered, but it’s one you
should definitely use. A couple years back, AWS started offering free SSL certifi-
cates. Certificate Manager is where you get them. It will do a validation check on
your domain (easier with Route53), and then grant you a free certificate to use in
your AWS services.

Other important AWS stuff
 • AWS Identity and Access Management (IAM). This is where you’ll secure your

account and grant permissions. Whether you go there or not, it’s running and
controlling your environment.

 • Simple Email Service (SES).

Making sure your app is compliant
It seems like every day there’s a new rule to comply with. It’s not critical that
you’re compliant right when you’re launching since you don’t have users yet, but
you should have a pretty good understanding of what’s necessary just in case.
We go over the basics below, but this is not legal advice— you should consult a

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

5

lawyer to ensure you’re fully compliant.

Personally identifiable information (PII)
If you collect any personal data from your users, you should be compliant with
data privacy rules.

Ways to get by for now (and that are just a good idea in general): specify a
privacy policy, refrain from sharing and selling information, and secure all
endpoints and access to PII using credentials.

Payment Card Industry Data Security Standard (PCI DSS)
PCI DSS was created to protect payment data. The PCI Security Standards

Council recommends all businesses that accept or process payment cards do

the following:

 • Create a firewall to protect cardholder data

 • Encrypt transmission of cardholder data

 • Use and regularly update anti-virus software

 • Implement strong access control measures

 • Regularly test security systems and processes

 • Maintain an information security policy

Even though PCI compliance is not technically a law, it is mandated by credit card
companies and overseen by the FTC.

Basically, anyone who handles payment should adhere to PCI rules.

Ways to get by for now:

 • Avoid accepting credit card or bank information on your website directly, but go through
a third-party processor like Stripe. If they handle all the payments, you’re secure.

https://www.bluematador.com/
https://www.business.com/articles/how-to-maintain-data-privacy-during-software-development/
https://www.pcisecuritystandards.org/pci_security/maintaining_payment_security
https://www.pcisecuritystandards.org/pci_security/maintaining_payment_security

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

6

 • Never give out payment information, even after identity verification.

 • Train your team to never take payment over the phone, email, chat, fax, mail, etc.
Always use either checks or a third-party payment processor.

General Data Protection Regulation (GDPR)
You know how every single website these days has an opt-in cookie policy? Yeah,
that’s because of GDPR.

Basically, if anyone from the EU ever uses your app, you’re subject to GDPR
rules. Again, this might not be a concern for you at the moment, but considering
its broad scope and potential fines (up to $20 million for small businesses), it’s
smart to keep GDPR in the back of your mind.

The 7 principles for GDPR compliance are:

 • Lawfulness, fairness and transparency

 • Purpose limitation

 • Data minimization

 • Accuracy

 • Storage limitation

 • Integrity and confidentiality (security)

 • Accountability

When you’re ready to tackle this, we like the Golden Data writeup on the 7 princi-
ples for GDPR compliance.

HIPAA

If you’re handling patients’ personal health information (PHI, the combination of
PII and health information) specifically for a health services provider, you need to
invest time into making sure you’re compliant with HIPAA rules.

If you’re handling PHI for an individual, e.g., if your app counts steps or collects

https://www.bluematador.com/
https://medium.com/golden-data/what-does-lawfulness-fairness-and-transparency-mean-under-eu-dp-law-a385d249d754
https://compliancy-group.com/hipaa-basics/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

7

heart rates, you don’t need to be HIPAA compliant.

If you fall into the “needs to be compliant” group, there are services out there you
can outsource health information to for a relatively low fee.

Privacy policies and terms and conditions
Even though these aren’t always mandated, it is vital that you have them in place,
as they may still have legal implications.

There really are no good shortcuts here. To minimize risk, you should create
these yourself with the help of an attorney, then post them and require accep-
tance from your users. It’s worth it, as having them just might save your bacon.

To get an idea of what you’ll need for yours, check out the privacy policies of your
competitors or others in your space.

Privacy policy tips from the Better Business Bureau
 • Make sure your privacy policy is visible.

 • Keep the language simple.

 • Only make promises you are prepared to keep.

 • Keep the policy up to date.

Special actions that might be irreversible
Before you launch anything, think carefully about some of the actions you’re
about to take: some of them may be irreversible, or at least costly to change.

Encryption
Encryption can be a pain. Fortunately, AWS has an out-of-the-box AWS encryption
tool, Key Management Store (KMS).

AWS KMS is available for a bunch of services, most of which we’ve listed below. I

https://www.bluematador.com/
https://www.bbb.org/article/news-releases/21390-bbb-tip-writing-an-effective-privacy-policy-for-your-small-business-website

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

8

recommend that you enable it on all the ones you use.

AWS KMS for EBS volumes
KMS encryption only works with EBS volumes. For this reason (and a host of
others), I recommend using only EBS volumes.

EBS encryption must happen at creation time. You cannot change this setting later.

The key used to encrypt and decrypt your volumes is managed in Amazon’s
KMS. The service rotates your keys, keeps backups, and ensures your keys are
safe and durably stored. It also works seamlessly with the block device on your
EC2 instance—you just mount the volume like you normally would with a non-en-
crypted EBS volume.

You can opt to encrypt when creating an EBS volume or when creating an EC2
instance in the AWS console.

Similar options are available in the aws-cli using the --kms-key-id argument.

KMS for S3 buckets
You can’t actually encrypt an entire S3 bucket, but you can encrypt individual
objects in S3. That’s why this is an irreversible action—adding encryption to all
your S3 objects requires iterating through them all and reuploading to S3.

To enable encryption on a specific object, just set the option during upload.

KMS stores these keys, too.

You can use the AWS console or the aws-cli to encrypt your objects. But, more
likely, you’ll want to update your code to encrypt objects.

KMS encryption with other stuff
Encryption is available as a built-in, manually enabled option for the

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

9

following services:

 • EFS file systems

 • SQS messages

 • DynamoDB

 • RDS

 • Kinesis streams

 • Cloudfront distributions

 • ELB

In every case, the encryption has to be enabled at creation time.

EBS volume provisioning
We recommend that you under-provision your EBS volumes. Hear us out.

Here’s why you shouldn’t over-provision your EBS volumes: The first problem is
that the cost of the EBS volume is proportional to the size of the volume. If you
over-provision, you’re spending money. This is simple math. The second problem
is that any snapshots (which you’ll likely take) will incur a proportional price, too.

Then it gets more complicated.

For gp2 volumes (the primary type), you don’t get more IOPS as you grow from
1GB to 33GB. The next graph displays this inverse proportionality. The decrease
is due to the minimum of 100 IOPS for all gp2 volumes. Read another way, you’ve
got to buy 34x what you’ll probably need in your first 6 months to get any addi-
tional throughput, which you probably won’t need for your first year.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

10

When you over-provision, not only do you not get more throughput or need more
size, but you also increase the time it takes to do snapshots. It also increases
the chance that you exhaust your burst balance, exceed the hour threshold, and
run multiple snapshots at the same time (assuming you’re taking one an hour,
but the principle applies regardless of your snapshot frequency). When multiple
snapshots are running simultaneously, it’s a downward spiral from there on
performance.

These prior issues aren’t even the worst—it’s the management of a large volume.

If you start small and decide to grow the volume, it’s not that big of a deal.

Going from big to small takes much more time and complexity. The only way
to shrink a disk is to create a new disk of the appropriate size, and then copy or
rsync over all the files. This takes much more time and is incredibly error-prone.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

11

Volume management

If you’re using EBS volumes and Linux, use LVM2.

Here’s the simple way to get started.

#!/bin/bash
sudo apt-get update
sudo apt-get install lvm2
mark your “physical volumes” (your EBS volumes)
sudo pvcreate /dev/xvdf
create a group of physical volumes called a “volume group”. Name it “main”
sudo vgcreate main /dev/xvdf
create a block device (like a pretend EBS volume) called a “logical volume”. Name it “vol1”
sudo lvcreate -l 100%FREE -n vol1 main
LVM DONE!
create an xfs filesystem and mount it
sudo apt-get install xfsprogs
sudo mkfs.xfs /dev/main/vol1
sudo mkdir /vol1
sudo mount /dev/main/vol1 /vol1
LVM DONE!
create an xfs filesystem and mount it
sudo apt-get install xfsprogs
sudo mkfs.xfs /dev/main/vol1
sudo mkdir /vol1
sudo mount /dev/main/vol1 /vol1

This code assumes Debian, an XFS file system, and that your EBS volume was
mounted to /dev/sdf (converted to /dev/xvdf in the OS).

That’s it! From this point on, don’t even worry about LVM. It will just work. Then, in
the future, if you need to update anything about your disks, look through the LVM
docs to see if you can do it easily (chances are the answer is“yes”).

Security keys
There are three types of keys that you should pay particular attention to when

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

12

dealing with AWS. This isn’t rocket science, but it’s also too easy to forget.

EC2 key pairs
Don’t lose them. If you lose them, you’ll have to terminate the machine. AWS will
not help you regain access to the server. Doesn’t matter if the server is a random
job server or your primary database. It will be gone.

Root account multifactor authentication (MFA)
It’s highly recommended that you enable MFA on your root AWS account credentials.

Access IDs and secret keys
It’s far more likely that you’ll share these too much than share them too little.
Don’t commit these to code.

Separate AWS accounts
Having few accounts limits your exposure to MFA, credentials, key pairs, VPNs,
traffic routing, and more. Yet, with this number, you gain all the benefits of secu-
rity, stability, disparate service limits, and simple cost-allocation reports.

To start, I would create a root billing account, a production account, and one
development account per developer. The root billing account won’t have any
infrastructure in it but will serve as the parent account and cost reporting center.
Lock this account down to a select few. The production account will host every-
thing necessary for production, including shared services like email and DNS.

Reproducibility
Instead of setting up a tool like Terraform, Saltstack, or Chef, just create a new
git repo and make a file for every type of server. Every command you run on the
server gets copied from the repo.

Without this git repo, if anything were to happen to your infrastructure, you would

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

13

start from scratch all over again. At least this method gives you a leg up. It also helps
your team members understand what you did, even if it’s not a perfect history.

How to prep for the future
Thus far, we’ve talked about what you need to do now and what you can put off.
In this section, we’ll talk about those things you do need to consider about the
future of your app. Some decisions you’re making now can’t be altered in the
future, i.e., you will be “locked in.” Here’s how to plan ahead.

Request AWS service quotas now
You should request a pretty high quota right now. You won’t fill it all for a little
while, but you’ll get capped if you hit the limit. It takes a long time for quota
increase requests to go through, so it’s definitely good to have a pretty big quota
in place beforehand. Reach out to AWS support for a limit increase once you get
any real amount of traffic.

Set up VPC
AWS VPC logically separates your application from the rest of AWS. AWS
accounts have a default VPC, but you’ll want to create a new VPC with a private
subnet to run your application in so individual resources are not accessible over
the internet. Then you’ll create a public subnet that’s accessible to the internet
and can access your application’s public interface. Using this configuration is
considered a security best practice because it allows your users to access your
app, but not its internals.

You’ll want to set up your VPC before you create any resources for your applica-
tion because those resources cannot be moved between subnets later.

Pick a region and services
You might be tempted to go for the region that’s the cheapest, but resist that
impulse. By going with a region that’s not the one you’re in, you are introducing

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

14

higher latency.

Start with the one you’re closest to, and just the one you’re closest to. You don’t
need to deal with additional regions when you’re just starting out. You can always
expand later on.

As for services, the same story here: choose the ones you need to get the job
done and not any more than that. The more services you choose, the more setup
you have to do, and the more you have to learn.

Once you choose a service, it’s really hard to switch because your code is written
to work with the service you’ve chosen. Keep that in mind as you’re choosing
your services. That sounds like a downside to AWS, but AWS isn’t going away
(and there’s a large community of helpful people built around it), so just do it. If
you decide to move later on, you can put the time in, but for now, just use AWS.

Vendor vs. open-source services
If you really want to keep things light, you could just use EC2 instances running
open-source software rather than using a lot of AWS services—we don’t recom-
mend that, though. Open source is tempting due to costs or because the code is
flexible. However, it’s not that cost-effective. You still have to pay for the server
it’s on and someone to manage it, and you run the risk of not knowing how to
manage or scale it, which could result in downtime. It’s nice to have flexibility in
code, but it’s almost always more effort to change it than it would be to adapt
your code to a paid AWS service.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

15

Step 2: Secure

AWS security is an ongoing battle that you must address during every release,
every change, and every CVE.

At minimum, you should complete the security assessment in the IAM console,
set up and use private subnets in VPC, and enable Amazon’s automated security
agent, GuardDuty.

Take the security assessment in the
AWS IAM console.
To see the security assessment, navigate in the console to the IAM service. On
this dashboard, if you haven’t completed the assessment, you’ll see a section for
“Security Status” with the following five items:

Delete your root access keys.
With your root keys, a hacker could delete your entire infrastructure, create a
new user account for later access, launch new bitcoin mining resources in a
different region, and more. You cannot restrict root access keys, but you can
replace them with specific IAM users (addressed two sections down) or tempo-
rary keys using IAM.

To delete your root access keys, navigate to the root security credentials page and
click “Access keys.” Take a moment to make sure that no currently running produc-
tion application depends on them by looking at the “Last Used” column in the table.
Then, delete every row in the table. You won’t need a single root access key.

Activate MFA on your root account.
Your root account should be protected by multi-factor authentication (MFA).

To enable MFA on the AWS root account, navigate to the root security credentials

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

16

page and click “Multi-factor authentication (MFA).” Once there, click “Activate
MFA” and follow the steps in the wizard. If you want multiple people to have
access to the root account (for disaster recovery), make sure all the people are
there during the activation process, as they’ll all need to scan the QR code.

Create individual IAM users.
Every new person who needs access to the AWS console, AWS resources, or the
aws-cli should receive it by creating a new IAM user for them specifically.

To create IAM users, navigate to AWS IAM users and click “Add User.” Then,
follow the wizard to specify their username, console vs. API access, and then the
exact permissions. The next step will be to place them in user groups, which give
them permissions that are more manageable at scale.

Use groups to assign permissions.
You can specify permissions on individuals, but you’ll likely have an ops group
and a dev group. Getting more granular is better, but also takes more time.
It’s sufficient to create the groups, grant necessary permissions for now, and
manage it later as your application grows.

Keep in mind: Only users can belong to groups. Roles must have their own
specific permissions set.

To create a group, navigate to AWS IAM groups and click “Create New Group.”
Then, follow the wizard to specify the group name and permission policies of that
group. After it’s created, you’ll need to go back to your list of users and add them
to the newly created group.

Apply an IAM password policy.
To set an IAM password policy, go to the IAM Account Settings page and click

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

17

“Set password policy.” Choose from the list of options and click “Save changes.”

Set up private subnets in VPC.
VPC makes it possible to specify public or private addressability on the
public internet.

It’s very difficult to change the public/private options once you’ve selected
them. That’s why I recommend setting up and using private subnets in VPC
from the beginning. If you don’t, it’s a large security hole with a terrible migration
process ahead.

The setup is a little more involved than the IAM security, and won’t fit in this blog
post without excessively bloating the topic. If you’re familiar with networking,
you could get through it without a tutorial. If you’re new to networking, the whole
thing, start to finish, will take less than 20 minutes with the right tutorial. Until I
write one, here’s the recommended guide from AWS on how to create a VPC with
a public and private subnet.

Bastion hosts
A bastion host is a simple EC2 instance that lives in a public subnet and has SSH
access open to the world (or your specific IP) and can connect on RDP or SSH to
any other instance in your VPC.

How to set up a bastion host
Here’s a checklist of things you’ll need to do to set up a bastion host.

 • Create your public/private subnets in a VPC (check the AWS docs linked above).

 • Launch an EC2 instance in the public subnet. This is your bastion host.

 • Adjust security groups to open SSH (port 22) to the bastion host from your local IP.

 • Test SSH to the bastion host. If it doesn’t work, check your route tables, IP address,
selected subnet, and ssh daemon.

 • Launch an EC2 instance in the private subnet. This is your private server.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

18

 • Adjust security groups to open SSH (port 22) to the private server from the bastion host.

 • SSH to the bastion host, and then test SSH from the bastion host to the private
server. If it doesn’t work, check your private route tables, IP address, selected
subnet, and username/keypair.

Here’s a helpful tutorial on how to use a bastion host to connect to a private
server using RDP.

Activate AWS GuardDuty.

Amazon’s GuardDuty is the easiest security monitoring tool you’ll ever enable in
AWS. Its purpose is to protect your AWS accounts and workloads with intelligent
threat detection and continuous monitoring. While I doubt that it’s as good as
other third-party tools, it will be good enough to warrant 1 minute of clicking and
a negligible price per month.

Here’s how to enable AWS GuardDuty from start to finish.

 • Step one: Navigate to the tool.

 • Step two: Make sure your primary region is selected (GuardDuty must be enabled
on a region-by-region basis).

 • Step three: Click “Get started”

 • Step four: Click “Enable GuardDuty.”

That’s it!

There are a couple things to note.

 • You need to enable GuardDuty once for every region you want it to run in.

 • You need to enable GuardDuty in every account you want it to run in. If you have
multiple production accounts, enable it in all applicable regions in all applicable
production accounts.

 • GuardDuty does not need VPC flow logs, DNS logs, or CloudTrail logs to be specifi-
cally enabled. It works on the underlying data.

 • GuardDuty sends findings to CloudWatch Events.

https://www.bluematador.com/
https://shilllabs.com/2018/05/08/connecting-to-a-windows-vm-via-rdp-through-a-linux-bastion-host-in-aws/
https://shilllabs.com/2018/05/08/connecting-to-a-windows-vm-via-rdp-through-a-linux-bastion-host-in-aws/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

19

It’s important to set up GuardDuty as well as get notifications. If you’re not
addressing notifications, you may as well not set it up.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

20

Step 3: Run

Testing
I know it’s tempting to start playing with automation right off the bat, but you
should first make sure your application actually works by running it manually.

When you first start running your application on real infrastructure, you’ll want to
test along the way in as small of increments as possible. That way if something
goes wrong, you know where it happened. Start by running your application
manually on the command line. Test it and make sure everything works before
turning it into a service or daemon.

Domains

As you’re deploying your web app, you will inevitably use DNS. If you’re deploying
on AWS, then you should be using Route 53 for a couple of reasons: it uses IAM
for authentication; it tightly integrates with EC2, S3, CloudFront, and more; and it
has smart mechanisms for global failover and health checks. Even if you don’t
use all of those features now, it’s so simple to switch and cheap to run that you
should do it anyway.

DNS explained
DNS stands for “domain name system.” Here are the basics: All computer networks
use IP addresses (numbers) as unique locators. DNS is the system that converts
domain names and subdomains into those IP addresses. DNS is usually available
on port 53 over TCP and UDP but runs as a normal process on a normal server.

Route 53 is simply Amazon’s implementation of DNS, including configuration
and integration with other AWS services. Just like every other DNS provider, AWS
Route 53 allows you to manage domain names, subdomains, and other types of
records. You can manage Route 53 in the AWS console, through API calls, and

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

21

through the aws-cli command-line utility.

How to make Route 53 authoritative
A DNS provider needs to be authoritative. If Route 53 is not authoritative, then
your changes will not be reflected on the public internet.

There are only three ways to make your Route 53 domains authoritative.

Option 1: Buy your Route 53 domain
If you haven’t already bought your domain, then just buy it straight from Route 53.
It’s straightforward to search for domains and purchase them.

Go to the domain registration page, pick your domain, and buy it. And you’re
done! It will automatically get set up in Route 53 in the following 24 hours, where
it will be authoritative and ready for action.

Option 2: Transfer your domain to Route 53’s registrar
Amazon has a wizard for requesting a domain transfer. To initiate a transfer, go
to the Registered Domains tab on Route 53 and click “Transfer Domain.”

The wizard will check for things like transfer locks, which can be adjusted in your
current registrar.

Make sure you copy all your DNS records over to the new hosted zone as soon as
you can. If you don’t, you’ll have some downtime.

Option 3: Update the NS records in your existing registrar
Skip this section if you can do either of the previous two—they’re MUCH better!

1. Create a new Hosted Zone in Amazon Route 53.

2. Duplicate the DNS in your registrar to Route 53.

3. Change the NS records.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

22

4. Wait for about 24 hours.

5. Verify that it’s working.

6. Delete all old records in the registrar.

If you need help, contact the registrar.

Hosted zones and DNS records
Every DNS record has 4 parts: the name (app.bluematador.com), the type (A), the
value (3.219.17.34), and the TTL in seconds (59).

Let’s go over the most-common DNS record types.

 • A specifies an IPv4 address like “3.219.17.34”. If multiple A records with the same
name are found, the client will select one at random.

 • AAAA specifies an IPv6 address like “2601:681:8100:8f0:8dd5:3d1c:7f1f:62ff”. If
multiple AAAA records are found, the client will select one at random.

 • CNAME specifies another CNAME, A, or AAAA DNS record where the correct values
can be found. Think of CNAME as a pointer or a redirect. An example record would
be “app2.bluematador.com CNAME app.bluematador.com.”

There are more DNS record types than this, but those are the ones you’ll primarily
use in deploying your application.

As for the name of records, it will always be a subdomain, like “dev.bluematador.
com” or “www.bluematador.com.” Every subdomain can point at a single applica-
tion, and there is no cost to the number of subdomains hosted.

Finally, the TTL will seem arbitrary. In large part, it is, except that low values are
required by AWS to allow changing infrastructure. I recommend using 1 minute in
all A, AAAA, and CNAME records.

Route 53 alias records
DNS doesn’t allow CNAMEs to be used in the apex record. You can’t make a
CNAME from “bluematador.com” (the apex—meaning “no subdomain”) to “www.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

23

bluematador.com” unless you use an alias record.

An alias record is a symlink, which is a self-resolving record that doesn’t take an
extra hop by the client to resolve.

You will use alias records for static website hosting in S3, CloudFront distribu-
tions, ELBs, and apex domains.

How to use Amazon Route 53
The nice thing about Route 53 is that it’s so simple if you use just its core feature
set—DNS records for hosted zones. Integrating it with other services is straight-
forward and fast to do.

Let me give you some examples.

 • For an EC2 instance, use an A record with the instance’s public IP address as the
value. The TTL should be 60 seconds. If you’re using an elastic IP address (you
probably should), then the TTL can be 3600 seconds (an hour).

 • For an S3 bucket, use a CNAME record to “<bucketname>.s3.<region>.amazonaws.
com”. The TTL may be 3600 seconds. Your bucket name must match exactly the
name of the subdomain—if your bucket name is something like “mybucket,” then it
won’t work. For a subdomain of “cdn.bluematador.com”, your bucket name must be
“cdn.bluematador.com”, and your CNAME would be “cdn.bluematador.com.s3.us-
east-1.amazonaws.com”. Keep in mind that SSL will not work on that URL (the
certificate won’t match the URL). To get SSL with your subdomain on S3, you’ll have
to use CloudFront in front of S3.

 • For an S3 bucket with website hosting, use an A record with alias to the bucket.
Using an alias record will provide a drop-down option in Route 53. If it doesn’t
appear, refresh your page. The name of the bucket must be identical to the subdo-
main you’re using, same as the S3 bucket in the paragraph above. Alias entries don’t
need a TTL.

 • For an ELB, ALB, CLB, or NLB, use an A record with an alias to the ELB. Again, an alias
won’t require a TTL and will provide a dropdown option for the ELB’s alias target.

 • For a CloudFront distribution, use an A record with alias to the distribution.

 • For an API gateway, use an A record with alias to the gateway.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

24

Other Route 53 features
You probably won’t use these now, but I want to bring it up so you can be aware
of it and use it later.

Other DNS record types
 • MX stands for “Mail eXchange” and is used to identify an email server. Your email

provider will have documentation around how to set these up.

 • TXT is plain text, and is only really good for validating domain ownership with tools
like Google Analytics or email validation.

 • SPF stands for “Sender Policy Framework” and can help increase your email deliver-
ability. I won’t go into this here, but since you’re making a web app, you should know
what this is.

 • SOA stands for “Start of Authority” and looks cryptic. You’ll have to look up the
exact syntax of this value, but it’s helpful to reduce negative TTLs—the time you
spend waiting for a new record to appear on the public internet. The default is
usually a day, meaning that if you query “abc.bluematador.com” and then add it to
Route 53, it will take a day to show up. If you reduce the negative TTL in the SOA
record, you can reduce that time spent waiting.

Private hosted zones
If you want an IP address for an internal database server, but don’t want that IP
available to the public, use an internal zone, and associate it with your VPC.

DNS health checks
You can (and should) also use Route 53 to manage traffic between the same
application hosted in different regions. You can route traffic by latency, shortest
path, or health. This is all set up in Route 53.

Connecting to data stores

In order to connect your app to your data stores, you’ll need to set up IAM roles
that have the right permissions. It’s pretty easy to set up IAM in RDS, and Amazon
has a bunch of resources to help you do that. You’ll also want to configure your

https://www.bluematador.com/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/security_iam_service-with-iam.html

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

25

application with connection information for your data stores.

Serving static assets
At Blue Matador, our static assets are sitting in S3 so they’re secure, quick to
grab, less vulnerable to data loss, and scalable.

In front of that, we’ve set up CloudFront as our CDN to improve availability and
reduce latency.

This setup works really well for us, but when you’re just starting out, we recom-
mend that you set up S3 on its own first. You can always set up CloudFront
later—here’s a handy guide to do that.

Load balancing
Instead of pointing incoming requests directly at a single server, point them at an
elastic load balancer (ELB). Your load balancer will then redistribute that traffic
across all your server instances to make sure no one instance gets overwhelmed.

Even if you don’t have a lot of instances right now, it’s a good idea to set up your
ELB now so it’s ready when you add more servers.

Database migrations
Your databases are constantly changing—whether you’re updating existing tables
or adding new ones—and you need a way to keep them up to date in production.

The simplest way is just to keep those migrations in a SQL file that’s versioned.
In that file, just make your notes, e.g., “here are the commands you run to make
this work.” You don’t need a complicated system—just keep a file with the
commands handy.

https://www.bluematador.com/
https://medium.com/tensult/creating-aws-cloudfront-distribution-with-s3-origin-ee47b8122727
https://docs.aws.amazon.com/autoscaling/ec2/userguide/autoscaling-load-balancer.html

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

26

Step 4: Optimize

Starting with automation
It’s incredibly helpful to have an automated build and deploy system that consis-
tently builds correctly.

AWS has a build and deployment automation tool built-in: AWS CodePipeline.

It includes:

 • CodeCommit (a git repository)

 • CodeBuild (build tool)

 • CodeDeploy (deployment tool)

 • CodePipeline (ties all the tools together; adds steps, approvals, staging, etc.)

On top of all that, you can also integrate any of your existing tools with CodePipeline.

AWS cost management vs. availability
You’re going to be drawn to adding a bunch of resources in multiple AWS avail-
ability zones and maybe even regions. You’ll be tempted to use the costliest tools
to get the job done because they seem better. Skip spending time on this in favor
of better protecting your data (which we’ll discuss below).

 • You don’t need high availability, so don’t launch more resources than you need.

 • You don’t need hot backups, so don’t make big database clusters.

 • You’re not sure what instance sizes you’ll need, so don’t buy any reservations that
last longer than three months. (I’ve been guilty of this one myself.)

 • You don’t need all the cost classes in CloudFront. You probably don’t even need
CloudFront. Ignore CDN for now.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

27

Disaster prevention and recovery
One area where you can’t skimp is safeguarding customer data. You can lose
servers, databases, and active traffic—a pain, but ultimately not catastrophic. But
losing customer data will cost you customers.

So it’s a good idea to have a backup plan. Take a look at every place you’re
storing data and make an AWS disaster recovery strategy. Here are some ideas.

S3
 • Replicate your data across regions.

 • Consider restricting deletes in IAM or S3 configuration.

 • Implement S3 object versioning.

EC2 instances and EBS volumes
 • Only put data on EBS volumes. EC2 instances do come with a little bit of memory,

but if you get rid of the instance, you lose everything on it.

 • Create snapshots as required.

 • But first, make sure you pause all writes, flush data to disk, sync file system, and
lock the file system. Only then create your snapshot. Failure to take any of those
measures may result in an unrecoverable snapshot.

 • Use EBS snapshot lifecycles to manage backups.

RDS
 • Configure your snapshots.

DynamoDB
 • Configure backups.

SQS and Kinesis
 • Keep messages long enough to catch up.

 • Consider streaming to S3 as a failsafe.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

28

Everything else
 • Read the documentation for every service you’re using.

 • Configure backups.

This all feels like no-brainer information, but it’s all too easy to let it slip until
something goes wrong. Take the time to prevent that from happening.

Configuration management
For every type of server (database, Kubernetes, etc.), have the following:

 • AMI

 • IAM role/permissions

 • Security group, subnet

 • Instance type and size

 • Launch script or copy/paste commands to run for configuration, programs, etc.

For every Lambda:

 • Language and version

 • Environment variables

For every other service:

 • Critical configuration

 • Versions

 • Permissions

Basically what you want at the end of this is a way for someone else to reproduce
the environment if they need to (as mentioned in the Security chapter). Only record
the things that matter, and keep them up to date: If you change a script, configura-
tion, or value, update your repo. If you need a new resource, refer to the repo.

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

29

Hearing that you’re down from an end-user has to be one of the worst feelings
ever. Ideally, if something is going to go wrong, you want to know about it first.

The cheap option
There are a bunch of services out there that will monitor different aspects of your
infrastructure. CloudWatch is AWS’s proprietary monitoring tool, so if you don’t
want to spend time looking into other tools, stick with that.

You can set up custom alerts in CloudWatch for pretty much anything you want.
For now, focus on what’s most critical and expand your coverage as you go.

The easy option
If you’d rather go for an automated monitoring solution, Blue Matador monitors
tons of AWS services without any alarm creation required on your part.

Step 5: Monitor

https://www.bluematador.com/

Deploying to AWS: V1.R1.06082020
Learn more: bluematador.com

30

MAKE MONITORING EASIER

START YOUR FREE TRIAL TODAY
START YOUR FREE TRIAL

Alerts without the toil.
The typical, manual monitoring approach
requires significant time and toil to manage
every alert on every resource. Blue Matador
eliminates the need to manually set up alerts
by automatically configuring full monitoring
coverage out-of-the-box.

Deploy faster, rest easier.
Agile teams are looking to rapidly deliver
features and delight customers, but that leaves
little time to configure proper alerting. Blue
Matador supports agile teams deploying multiple
times per day by ensuring that they will be
alerted of any potential issues.

Know about critical
production issues.
Issues in your infrastructure can pop-up at any
time and could be caught unaware. Blue Matador
identifies previously unknown issues, ensuring
you see the problems first—instead of hearing
about them from your customers.

https://www.bluematador.com/
https://app.bluematador.com/ur/register
https://app.bluematador.com/ur/register
https://app.bluematador.com/ur/register
https://app.bluematador.com/ur/register

https://app.bluematador.com/ur/register

	Introduction
	Step 1: Prepare
	Is AWS the right call for your app?
	What you need to know about your app first
	Choosing your AWS services
	AWS compute services
	AWS database services
	AWS content delivery services
	Other important AWS stuff

	Making sure your app is compliant
	Personally identifiable information (PII)
	Payment Card Industry Data Security Standard (PCI DSS)
	General Data Protection Regulation (GDPR)
	Privacy policies and terms and conditions

	Special actions that might be irreversible
	Encryption
	Privacy policy tips from the Better Business Bureau
	EBS volume provisioning
	Security keys
	Separate AWS accounts
	Reproducibility

	How to prep for the future
	Request AWS service quotas now
	Set up VPC
	Pick a region and services
	Vendor vs. open-source services

	Step 2: Secure
	Take the security assessment in the AWS IAM console.
	Delete your root access keys.
	Activate MFA on your root account.
	Create individual IAM users.
	Use groups to assign permissions.
	Apply an IAM password policy.

	Set up private subnets in VPC.
	Bastion hosts

	Step 3: Run
	Testing
	DNS explained
	How to make Route 53 authoritative
	Hosted zones and DNS records
	How to use Amazon Route 53
	Other Route 53 features

	Serving static assets
	Load balancing
	Database migrations

	Step 4: Optimize
	Starting with automation
	AWS cost management vs. availability
	Disaster prevention and recovery
	S3
	EC2 instances and EBS volumes
	RDS
	DynamoDB
	SQS and Kinesis
	Everything else

	Configuration management

	Step 5: Monitor
	The cheap option
	The easy option

	Check Box 21: Off
	Check Box 22: Off
	Check Box 23: Off
	Check Box 24: Off
	Check Box 25: Off
	Check Box 26: Off
	Check Box 27: Off
	Check Box 28: Off
	Check Box 29: Off
	Check Box 30: Off
	Check Box 31: Off
	Check Box 32: Off
	Check Box 33: Off
	Check Box 34: Off
	Check Box 35: Off
	Check Box 36: Off
	Check Box 37: Off
	Check Box 38: Off

