
KUBERNETES 
FOR STARTUPS



Kubernetes for Startups
Learn more: bluematador.com

2

Table of Content

Who Is This Book for?								        3

An Intro to Kubernetes Components				    4

Creating Your First Cluster						      6

Building And Deploying Your Application			  8

Security Essentials								        14

Monitoring Your Cluster							       18

Log Management for Kubernetes					     21

What Not To Do (Yet)								        26

Blue Matador										          29

https://www.bluematador.com/


Kubernetes for Startups
Learn more: bluematador.com

3

Who Is This Book for?
 
There are a lot of guides for setting up Kubernetes on the internet. Most of them deal with creating 
a trivial cluster that could never support actual traffic, or they deal with topics your company won’t 
need until much later in its life. This book focuses on what you need to launch your startup’s app on 
Kubernetes for the first time. Reading this book will help you understand essential Kubernetes topics, 
build your first cluster, deploy your application, monitor your cluster, and learn about some next steps to 
implement as your app scales.

The first section of this book covers the components that make up a Kubernetes installation. After 
that, we build and deploy your cluster. Next, we’ll talk about how to monitor your cluster. Finally, 
we’ll talk about some tools and topics you’ve probably heard about in your research that you can 
implement later.

About Blue Matador
We’ve been there. This is the blueprint we followed as we built and deployed our own webapp in 
Kubernetes. We understand that when you’re a fast moving startup, you don’t have the luxury of 
spending days figuring out exactly what you need in a Kubernetes cluster.

We’ve also spent a lot of time working with and thinking about Kubernetes itself. Our software 
automatically monitors Kubernetes and alerts you when things go wrong without any configuration. 
With Blue Matador, you don’t need to know what alerts to set in Kubernetes. You can spend your time 
building your startup, not monitoring your infrastructure.

https://www.bluematador.com/


Kubernetes for Startups
Learn more: bluematador.com

4

An Intro to Kubernetes Components
 
First let’s go over some of the basic terminology used with Kubernetes. Many of these terms should be 
familiar and Kubernetes itself is actually a very intuitive system once you understand how the different 
components work together. 

 
What is a Pod?
A pod is the basic unit of an application running in Kubernetes. A pod is a group of one or more Docker 
containers (though more often than not, it’s just one) that has one purpose, whether that’s a web server, 
a job, or a cache. Pods are configured to use a specific amount of CPU and memory, which helps 
Kubernetes know how and where to schedule the pod.

What is a Node?
A node is a server running in a Kubernetes cluster. In traditional webapps, you would run a single 
microservice on a node, but Kubernetes will schedule multiple pods on a single node. Nodes that 
run application pods are called worker nodes, while nodes that run system pods for Kubernetes 
administration are called master nodes.

What is a Namespace?
A namespace is a virtual subset of your Kubernetes cluster. You can use Namespaces to organize 
your other Kubernetes components and control access to them using Role-Based Access Control. 
Most Kubernetes components such as pods, services, deployments, and daemonsets belong to a 
namespace while low-level components such as nodes and persistent volumes do not. When you are 
just getting started, you can usually use the default namespace, but as you become more familiar with 
Kubernetes you will want to create additional namespaces to organize your growing infrastructure.

What is a Deployment?
Using a deployment, you can define how many instances of a particular pod you’d like to have running 
at any time. If a pod dies, the deployment will spin up another instance. Deployments also allow you to 
conduct rolling updates where you can roll out a new version of a container a couple of pods at a time. 
This feature lets you maintain high availability while updating your app.

What is a DaemonSet?
While a deployment will schedule pods wherever there is capacity, a DaemonSet will make sure that 
exactly one instance of your pod is scheduled on each node. This is useful for ensuring monitoring tools 
or utilities like caches are available to all nodes in your cluster.

https://www.bluematador.com/


Kubernetes for Startups
Learn more: bluematador.com

5

What is a Service?
A service groups pods and exposes them to the rest of the cluster, or even outside the cluster. For 
example, a service can cover a set of pods running a microservice and make them accessible by the 
name of the service. Kubernetes 1.11+ comes with CoreDNS installed, which will automatically create 
a DNS name for your services. Services can also be created as LoadBalancers to distribute traffic 
between the pods and allow external access.

Here is a diagram that shows how these components are related in a simple example  
Kubernetes cluster:

https://www.bluematador.com/


Kubernetes for Startups
Learn more: bluematador.com

6

Creating Your First Cluster
 
In order to really understand the power and utility that Kubernetes provides, you have to get 
your hands dirty and create a Kubernetes cluster. There are a ton of resources out there already 
for creating a Kubernetes cluster, so we will just go over a few methods briefly and give you the 
resources you need to fully configure your cluster in the environment of your choosing. The four 
environments we will cover are:

  •  Development
  •  Amazon Web Services
  •  Google Cloud
  •  Azure

 
Development
Setting up a Kubernetes cluster in development is a surprisingly simple process and is a great way to 
explore Kubernetes without committing to a specific vendor or paying the cost of running a production-
ready cluster. 

Minikube is the de-facto development installation of Kubernetes. Minikube essentially runs a single 
Kubernetes node on a VM on your local machine, and provides utilities for interacting with Kubernetes 
locally. It makes it easy to quickly install specific versions of Kubernetes, update your kubectl 
configuration to point to your local cluster(s) and even has a helper for mounting local filesystems into 
your cluster for quick development and testing of Kubernetes.

After installation, you can start minikube with Kubernetes version 1.13.0:

 minikube start --kubernetes-version v1.13.0	

Then, tell kubectl to switch to the minikube context so you can target the local cluster:

 kubectl config use-context minikube	

If you want to mount a local directory so it can be accessed from within minikube, you can use 
the minikube mount command. This is useful when using minikube in development so that you 
can access your local filesystem from within docker containers running on minikube. The following 
command mounts the current directory to /app:

 minikube mount .:/app	

You may run into issues with minikube mount if your pods try to mount a directory before it is mounted 
in minikube. In most cases you can just re-run minikube mount and then recreate your pods to resolve 
the issue.

https://www.bluematador.com/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/#mounted-host-folders


Kubernetes for Startups
Learn more: bluematador.com

7

Amazon Web Services
AWS is one of the most common places to run a Kubernetes cluster. Running your Kubernetes cluster 
in AWS is probably the right move if you are already using or plan to use lots of AWS services. There 
are two recommended ways to run a Kubernetes cluster on AWS: using kops or EKS.

Kops is an open-source tool created to allow for easy creation, upgrade, and maintenance of production 
Kubernetes clusters. Kops will create master nodes and worker nodes for your cluster, and has many 
utilities built-in to automatically set up high-availability, networking, and manage configuration for the 
EC2 instances your nodes run on. 

The downside of Kops is that you are still running the Kubernetes master nodes on your infrastructure 
and have to maintain the security of those nodes. In addition, upgrading your cluster can be difficult 
with kops since its interaction with the AWS API to manage EC2 instances can encounter errors, and 
rolling back during an upgrade can be very tricky.

Another solution to running Kubernetes on AWS is Amazon EKS. EKS is the Amazon-managed 
Kubernetes solution. What can be confusing about EKS is that the marketing material makes it appear 
to be a fully-managed Kubernetes solution, but EKS actually only manages the control plane (master 
nodes, API services) for your cluster. You still have to set up worker nodes and join them to your cluster. 
You can use eksctl, a command-line tool similar to kops for creating EKS clusters, or you can use a 
Terraform module to manage your cluster config if you use Terraform. Either of these tools will make it 
much simpler to get started on EKS.

Google Cloud Platform
GCP is another common cloud to run Kubernetes on. Since Kubernetes was created by Google, their 
GKE (Google Kubernetes Engine) service is tightly integrated with Kubernetes. GKE has the simplest 
method of creating a cluster that is ready for Docker images:

 gcloud container clusters create [CLUSTER_NAME]	

GKE also has extensive documentation for cluster administration and support for many features that 
other clouds do not have like automatic remediation, first-class log management for Kubernetes, and 
the newest versions of Kubernetes available.

Azure
For anyone developing with Windows, Azure is a natural choice to run Kubernetes. AKS (Azure 
Kubernetes Service) is an offering similar to EKS and GKE to allow for quick provisioning of Kubernetes 
clusters. Azure offers a tutorial for creating a Kubernetes cluster in AKS. Since AKS is a newer 
managed Kubernetes service, it may not be intuitive at times to use, but this should improve as 
Microsoft invests more into Azure and AKS. 

https://www.bluematador.com/
https://github.com/kubernetes/kops
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/4.0.2
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-admin-overview
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-deploy-cluster


Kubernetes for Startups
Learn more: bluematador.com

8

Building And Deploying Your Application
 
Getting started with your first Kubernetes deploy can be a little daunting if you are new to Docker 
and Kubernetes, but with a little bit of preparation your application will be running in no time. In 
this section we will cover the basic steps needed to build Docker images and deploy them to your 
Kubernetes cluster.

Docker Build
The first step to deploying your application to Kubernetes is to build your Docker images. I will 
assume you have already created Docker images in development to create your application, and we 
will focus on tagging and storing production-ready Docker images in an image repository.

The first step is to run docker image build. We pass in . as the only argument to specify that it should 
build using the current directory. This command looks for a Dockerfile in your current directory and 
attempts to build a docker image as described in the Dockerfile.

 docker image build .	

If your Dockerfile takes arguments such as ARG app_name, you can pass those arguments into the 
build command:

 docker image build --build-arg “app_name=MyApp” .	

You may run into a situation where you want to build your app from a different directory than the current 
one. This is especially useful if you are managing multiple Dockerfiles in separate directories for 
different applications which share some common files, and can help you write build scripts to handle 
more complex builds. Use the -f flag to specify which dockerfile to build with:

 docker image build -f “MyApp/Dockerfile” . 	

When using this method, be mindful that the paths referenced in your Dockerfile will be relative to the 
directory passed as the final argument, not the directory the Dockerfile is located in. So in this example, 
we will build the Dockerfile located at MyApp/Dockerfile but all paths referenced in that Dockerfile for 
COPY and other operations will actually be relative to the current working directory, not MyApp.

Tagging
After your docker image has been built, you will then need to tag your image. Tagging is very 
important in a docker build and release pipeline since it is the only way to differentiate versions of 
your application. It is common practice to tag your newest images with the latest tag, but this will 
be insufficient for deploying to Kubernetes since you have to change the tag in your Kubernetes 
configuration to signal that a new image should be ran. Because of this, I recommend tagging your 
images with the git commit hash of the current commit. This way you can tie your docker images 
back to version control to see what has actually been deployed, and you have a unique identifier for 
each build.

https://www.bluematador.com/


Kubernetes for Startups
Learn more: bluematador.com

9

To get the current commit hash programmatically and then tag your image, run:

 git rev-parse --verify HEAD	

You can then tag your image like so:

 docker image tag $IMAGE MyApp:$COMMIT	  

Tagging your image after it is built can be useful for fixing up old images, but you can and should tag 
them as part of the build command using the -t argument. With everything put together, you could write 
a simple bash script to build and tag your image:

 #!/bin/bash	
 COMMIT=$(git rev-parse --verify HEAD) 	
 docker image build -f “MyApp/Dockerfile” . \ 	
   --build-arg “app_name=MyApp” \   	
   -t “MyApp:latest” \  	
   -t “MyApp:${COMMIT}” 	

Docker Repositories
Now that you have your Docker images built and tagged, you need to store them 
somewhere besides on your laptop. Your Kubernetes cluster needs a fast and reliable 
Docker repository from which to pull your images, and there are many options for this.

One of the most popular Docker image repositories is dockerhub. For open source projects or public 
repositories, dockerhub is completely free. For private repositories, dockerhub has very reasonable 
pricing.

To push images to dockerhub, you must tag your images with the name of the dockerhub repository 
you created, and then push each tag. Here is an example of tagging and pushing the latest image built 
above:

 docker image tag MyApp:latest myrepo/MyApp:latest	     
 docker login  	
 docker push myrepo/MyApp:latest       	

As with any tag, you can tag your image during the build using the -t argument instead of tagging 
it later. When pushing tags to your remote repository, you will need to push each tag that you want 
access to. Even if your latest tag is the same image as another tag, they must be pushed separately to 
the remote repo so each of them can be used in your Kubernetes configuration.

https://www.bluematador.com/
https://hub.docker.com/
https://hub.docker.com/pricing


Kubernetes for Startups
Learn more: bluematador.com

10

For anyone already using Amazon Web Services, Amazon Elastic Container Registry provides cheap 
and private docker repositories. You can similarly tag and push docker images to your ECR repository 
if you have the AWS CLI installed. Just replace ECR_URL in the following example with the actual URL 
for your ECR repository, which can be viewed in the AWS Web Console.

 docker image tag MyApp:latest ECR_URL/MyApp:latest	
 eval $(aws ecr get-login --no-include-email)	
 docker push ECR_URL/MyApp:latest 	

GCP users can use Container Registry to store their Docker images. Simply configure your GKE 
instances to have access to your registry, and then use the gcloud tool to authenticate with the repo. 
Replace PROJECT_ID with your GCP project ID:

 gcloud auth configure-docker	
 docker image tag MyApp:latest gcr.io/PROJECT_ID/MyApp:latest	
 docker push gcr.io/PROJECT_ID/MyApp:latest	

Azure also has a private container registry with similar features to dockerhub, ECR, and Container 
Registry. You can follow this tutorial to set up and push images to the Azure Container Registry.

https://www.bluematador.com/
https://aws.amazon.com/ecr/
https://cloud.google.com/container-registry/
https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-prepare-acr


Kubernetes for Startups
Learn more: bluematador.com

11

Deploying 
Now that you have built and pushed your Docker images, you can deploy them to your Kubernetes 
cluster. The quickest way to get started is by using kubectl. You can create a Deployment in your 
cluster by following the Kubernetes documentation. Here is an example configuration for a Deployment 
to run 3 copies of the example MyApp image and expose port 80:

 apiVersion: apps/v1	
 kind: Deployment	
 metadata:        	
   name: MyApp     	
   labels:     	
     app: MyApp     	
 spec:    	
   replicas: 3    	
   selector:        	
     matchLabels:      	
       app: MyApp  	
   template:    	
     metadata:    	
       labels:    	
         app: MyApp  	
     spec:        	
       containers:   	
       - name: MyApp   	
         image: myrepo/MyApp:latest   	
         ports: 	
          - containerPort: 80 	

Once you have configured your deployment, you will not need to modify most of the options when you 
update your app except for the image attribute on your containers. 

You’ll notice in the example I have used the latest tag. When you first create a Deployment, it will pull 
the correct image and run it. If you update the latest tag to a newer Docker image, Kubernetes will have 
no way of knowing that it needs to pull a new image and deploy new Pods. This is why we should not 
use latest when deploying to Kubernetes. By using another tag such as the git commit, we can simply 
update the deployment using kubectl edit deploy/MyApp, change the image attribute, and save. Now 
Kubernetes will detect that the MyApp Deployment has changed, and will rotate out the old pods for 
new ones automatically.

For an in-depth look at how Deployments update your pods, you can check out our detailed blog post.

https://www.bluematador.com/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://www.bluematador.com/blog/kubernetes-deployments-rolling-update-configuration


Kubernetes for Startups
Learn more: bluematador.com

12

A common issue you may run into is permissions issues when pulling your Docker image from the 
repository. For public repositories, this should not be a problem. For private repositories, you will 
have to dig into the documentation for dockerhub, Amazon ECR, Google Container Registry, or 
Azure Container Registry to figure out how your Kubernetes worker nodes should authenticate with 
the registry. 

When creating or updating a Deployment, you can check its update status with the following command:

 kubectl rollout status deploy/MyApp  	

Once the deploy is complete, we can now make a Service to expose our pods for access. Let’s create a 
basic ClusterIP Service that exposes our pods only within the Kubernetes cluster:

 apiVersion: v1 	
 kind: Service  	
 metadata:       	
   name: MyApp  	
   namespace: default  	
   labels: 	
     app: MyApp   	
 spec: 	
   ports:	
   - port: 80	
     protocol: TCP	
   selector:  	
     app: MyApp 	
   type: ClusterIP	

Notice how the selector for our Service matches one of the labels from our Deployment. 
This is what allows Kubernetes to route traffic directed at our service to our pods. Now you 
can use the dns name MyApp to send traffic to your pods from within the cluster:

 > curl http://MyApp:80	
 > Hello World	

https://www.bluematador.com/


Kubernetes for Startups
Learn more: bluematador.com

13

Most applications will want to allow external access at some point. This can be accomplished by using 
a Service with type LoadBalancer. LoadBalancer services will create an internal Kubernetes Service 
that is connected to a Load Balancer provided by your cloud provider (AWS, GCP, or Azure). This will 
create a publicly addressable set of IP addresses and a DNS name that can be used to access your 
cluster from an external source. 

 apiVersion: v1	
 kind: Service	
 metadata:	
   name: MyApp-public 	
   namespace:default	
   labels: 	
     app: MyApp  	
 spec: 	
   ports:  	
   - port: 80  	
     targetPort: 80 	
     protocol: TCP 	
   selector:  	
     app: MyApp 	
   type: LoadBalancer  	

The specifics on how the cloud’s Load Balancer can be configured are specific to the cloud.
Read the Kubernetes documentation for debugging issues with your specific cloud provider.

Now that your LoadBalancer service is created you should be able to see a corresponding resource in 
your cloud provider’s dashboard. You can use the public DNS and IP addresses to access your service 
externally.

https://www.bluematador.com/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/


Kubernetes for Startups
Learn more: bluematador.com

14

Security Essentials
 
Now that you know how to create your first Kubernetes cluster and deploy some applications to it, 
you should take a moment to think about security. We all know that there will always be another 
vulnerability, and another breach, but we have to do our best to secure the things we control as best as 
we can. This is by no means an exhaustive list of security items to check, but should get you started on 
the right path.

Upgrading
Kubernetes has over 2,000 individual contributors and is updated frequently. With more eyes on it, 
security vulnerabilities are also being discovered and patched more frequently. It is important to stay 
reasonably up-to-date on Kubernetes versions especially as it matures. How you upgrade your cluster 
depends on what tool or service you used to create it:

●	 Upgrading with Kops
●	 EKS Cluster Upgrade
●	 GKE Cluster Upgrade
●	 AKS Cluster Upgrade

Try to stay no more than 1 or 2 major versions behind on Kubernetes, and take advantage of the 
existing tools to help you upgrade often and without service disruption.

Restrict API Access
Most cloud implementations for Kubernetes already restrict access to the Kubernetes API for your 
cluster by using IAM (Identity & Access Management), RBAC (Role-Based Access Control), or AD 
(Active Directory). If your cluster does not use these methods, you can usually set up one of these 
methods using open source projects for interacting with various authentication methods. We also 
recommend restricting API access by IP address if at all possible, only allowing access from trusted IPs 
such as a VPN or bastion host.

Restrict SSH Access
Another easy and essential security policy to implement in your new cluster is to restrict SSH access to 
your Kubernetes nodes. Ideally you would not have port 22 open on any node, but you may need it to 
debug issues at some point. You can configure your nodes via your cloud provider to block all access to 
port 22 except via your organization’s VPN or a bastion host. This way you can quickly get SSH access 
but outside attackers will not be able to.

https://www.bluematador.com/
https://www.cvedetails.com/vulnerability-list/vendor_id-15867/product_id-34016/Kubernetes-Kubernetes.html
https://github.com/kubernetes/kops/blob/master/docs/upgrade.md
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-cluster
https://docs.microsoft.com/en-us/azure/aks/upgrade-cluster


Kubernetes for Startups
Learn more: bluematador.com

15

Namespaces
If your cluster acts as a multi-tenant environment, you can and should use Namespaces to restrict 
access to resources within the cluster. Namespaces, together with RBAC, will let you create user 
accounts that have access only to particular resources. In this example, we create a user MyDevUser 
that only has access to resources in the development namespace:

 ---   	
 apiVersion: v1 	
 kind: ServiceAccount  	
 metadata: 	
   name: MyDevUser 	
   namespace: development 	
 ---    	
 kind: Role 	
 apiVersion: rbac.authorization.k8s.io/v1beta1 	
 metadata: 	
   name: MyDevUser  	
   namespace: development 	
 rules:   	
 - apiGroups: [“”, “extensions”, “apps”] 	
   resources: [“*”]  	
   verbs: [“*”]    	
 ---     	
 kind: RoleBinding   	
 apiVersion: rbac.authorization.k8s.io/v1beta1   	
 metadata:  	
   name: MyDevUser   	
   namespace: development  	
 subjects:   	
 - kind: ServiceAccount 	
   name: MyDevUser  	
   namespace: development 	
 roleRef:  	
   apiGroup: rbac.authorization.k8s.io   	
   kind: Role  	
   name: MyDevUser  	

You can also configure your namespaces to restrict the amount of memory and CPU that are allowed to 
run in that namespace. This can help prevent rogue deployments in development or QA from affecting 
the available resources in production.

https://www.bluematador.com/
https://kubernetes.io/docs/tasks/administer-cluster/namespaces-walkthrough/


Kubernetes for Startups
Learn more: bluematador.com

16

Network Policies
Network policies also allow you to restrict access to services within your Kubernetes cluster. You can 
also use them to restrict access to your cloud’s metadata API from pods in your cluster. Follow this 
documentation to set up a network policy.

Do Not Run As Root
One of the most overlooked security issues is running the containers in your Pods as the root user. In 
Kubernetes, the UID of the user running a container is mapped directly to the host. This means that if 
your container runs as UID 0 (root) it will also appear as root on the node it is running on. Kubernetes 
has built-in protections to prevent escalation of privileges with this mechanism, but there is always the 
risk of a security vulnerability or exploit where a container could escalate privileges this way. 

The way around this is usually quite simple: do not run your containers as root. You can accomplish 
this by modifying the Dockerfile for your built containers to create and use a user with a known UID. For 
example, here the beginning of a Dockerfile that adds a user named user with UID 1000 to an image 
for Java 8:

 FROM openjdk:8-jre-slim-stretch  	
	
 USER root  	
	
 RUN groupadd -r user --gid=”1000” \     	
   && adduser --home “/home/user” --gid “1000” --disabled-password --disabled-login --gecos ‘’        	
--shell “/bin/bash” --uid “1000” user \  	
   && chown -R user /home/user   	
	
 USER 1000 	

Notice that we use USER 1000 instead of USER user to declare which user is used going forward. We 
do this for the sake of consistency with Kubernetes. When you configure your Kubernetes manifest to 
run your container, you can specify what UID the container must run as to enforce that the correct user 
is used. This is especially useful for larger teams where cluster security may be enforced by a different 
team than the one writing the Dockerfiles. Simply add these lines to your spec.containers to enforce 
that the container is ran as UID 1000.

         securityContext:   	
           runAsUser: 1000  	
           allowPrivilegeEscalation: false 	

You can also enforce that non-root users are used using PodSecurityPolicies. This feature is in beta as 
of Kubernetes v1.14, and is documented here.

https://www.bluematador.com/
https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/
https://kubernetes.io/docs/tasks/administer-cluster/declare-network-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/


Kubernetes for Startups
Learn more: bluematador.com

17

IAM Access
One of the benefits of running Kubernetes in one of AWS, GCP, or Azure is the ability to use their 
managed services to run your DNS, databases, load balancing, and monitoring. You will likely need to 
both grant and restrict access to these services from your Kubernetes cluster so you can fully integrate 
Kubernetes.

Google cloud uses Cloud IAM to control access to its services. This is integrated with GKE using RBAC 
as described here. You can restrict your GCP users and roles to certain access within your Kubernetes 
cluster, but there is no built-in way to assign an IAM role to a pod and restrict its access to services; a 
pod will have the same access as the node it runs on.

Azure’s AKS uses Active Directory to manage access to resources. This documentation describes how 
you can use AD to not only restrict user access to your cluster, but you can also assign Pod Identities 
for fine-grained control over how pods access other Azure services.

Amazon’s EKS by default uses IAM to restrict user access to your EKS cluster. There is no built-
in method for restricting pod access to other AWS services, but the open-source projects kiam and 
kube2iam provide this functionality. On EKS clusters, kiam is more difficult to set up because of the 
client-server model that project uses, but both solutions will work on a kops-managed cluster. For an in-
depth look at managing IAM permissions for Kubernetes in AWS specifically, check out our blog series.

Security Reviews
As a startup, it can be easy to forget about one of the most mundane security tasks: getting an external 
security review. It is extremely important to validate the work you’ve done on your cluster with a 3rd 
party if your application will be handling any sensitive user data, and even if it is not it is a good practice 
to do annual security reviews to make sure you are on top of all of the issues mentioned above.

https://www.bluematador.com/
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://docs.microsoft.com/en-us/azure/aks/operator-best-practices-identity
https://github.com/uswitch/kiam
https://github.com/jtblin/kube2iam
https://www.bluematador.com/blog/iam-access-in-kubernetes-the-aws-security-problem


Kubernetes for Startups
Learn more: bluematador.com

18

Monitoring Your Cluster
 
Now that you’re running your app in Kubernetes, you’ll want to make sure you’re keeping it healthy. In 
this section, we’ll discuss how to view your current cluster state and monitor your Kubernetes cluster 
over time.

First, to list the currently running pods, as well as some details about each pod, run the following 
command:

 kubectl get pods -o wide 	

Once you have the list of pods, you can use it to view logs for a particular pod, which can be really 
useful when trying to find the source of a bug. You can tail the logs from a particular pod by issuing this 
command:

 kubectl logs -f <podname> 	

Finally, you can use the kubectl top command with pods and nodes to see resource utilization and find 
troublesome pods.

 kubectl top pods 	
 kubectl top nodes 	

In order to run this command, you’ll need to install metrics-server in your cluster. This command is 
particularly useful to keep an eye on things when deploying, or when an emergency occurs. For a list of 
other useful kubectl commands, check out the cheat sheet in the Kubernetes documentation.

https://www.bluematador.com/
https://github.com/kubernetes-incubator/metrics-server
https://kubernetes.io/docs/reference/kubectl/cheatsheet/


Kubernetes for Startups
Learn more: bluematador.com

19

Prometheus and Grafana
The Kubernetes documentation specifically recommends using Prometheus, which is an open source 
metric collector. Once Prometheus is installed in your cluster, it’ll begin collecting performance metrics. 
All you need to do is create a cluster role, a config map, and a deployment for Prometheus, most of 
which can be copied and pasted from any number of tutorials online (here’s one to get you started). It 
takes only a couple minutes to get set up.

While you can view metric graphs in Prometheus, they leave something to be desired and you can only 
view one metric at a time:

This is unlikely to cover your visualization needs, so most people install Grafana, an open source 
dashboard application, in their clusters as well. Grafana’s setup is a breeze because it has an 
integration that pulls data from Prometheus. It provides a lot of dashboarding functionality and is easy 
on the eyes
.

When something goes wrong in your cluster, you’re unlikely to happen to be watching it. You’ll need 
an alerting system to notify you. To get notifications, you’ll need to install AlertManager, which is the 
Prometheus ecosystem’s alerting system. AlertManager can be configured to alert on any metric in 
Prometheus, but it’s most helpful to be watching CPU and memory usage.

https://www.bluematador.com/
https://devopscube.com/setup-prometheus-monitoring-on-kubernetes/
https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/alerting/alertmanager/


Kubernetes for Startups
Learn more: bluematador.com

20

Paid Services
While setting up monitoring for your Kubernetes cluster within said cluster is very easy, it can be  
dangerous in an actual downtime event.

If your application is misbehaving and is running in the same cluster as your monitoring solution, it will 
likely break your monitoring solution. You will be flying blind when you need monitoring the most!

As such, it makes a lot of sense to run your monitoring solution elsewhere. While you could spin up 
another cluster, sometimes it’s easier and cheaper just to pay for a monitoring service. There are many 
services that monitor Kubernetes:

●	 Datadog - an all-in-one metrics monitoring solution that combines an agent that collects metrics, 
visualizations, and alert configuration

●	 New Relic - an APM that can also monitor your cluster’s resource usage
●	 Dynatrace - another APM that can also monitor your cluster’s resource usage
●	 Blue Matador - an automated monitoring solution that watches your cluster and alerts you of 

issues without the need for any configuration

 
Kubernetes Events
Kubernetes also provides a stream of events that are occurring within your cluster. Many of these 
events are just info level events, but critical events are also sent to the stream. To view all the events in 
your cluster, use:

 kubectl get events 	

Many of the paid solutions mentioned above also collect critical Kubernetes events, including 
Blue Matador. For an in depth dive into Kubernetes events, check out our blog post on the subject. 

https://www.bluematador.com/
https://www.bluematador.com/blog/kubernetes-events-explained


Kubernetes for Startups
Learn more: bluematador.com

21

Log Management for Kubernetes
 
Log messages help us to understand data flow through applications, as well as spot when and where 
errors are occurring. There are a lot of resources for how to store and view logs for applications running 
on traditional services, but Kubernetes breaks the existing model by running many applications per 
server and abstracting away most of the maintenance for your applications. In this section, we focus on 
log management for applications running in Kubernetes by reviewing the following topics:
 
  •  How Logging Works in Kubernetes
  •  Viewing Logs
  •  Centralized Log Management

By the end of this section, you should have a good high level understanding of the essential concepts 
for logging with Kubernetes, and should be ready to begin implementing it for your cluster and logging 
use case.

How Logging Works in Kubernetes
In a traditional server setup, application logs are written to a file such as /var/log/application.log and 
then viewed either on each server, or collected by a logging agent and sent to a centralized location.

https://www.bluematador.com/


Kubernetes for Startups
Learn more: bluematador.com

22

With Kubernetes, writing logs to disk from a pod is discouraged since you would then have to manage 
log files for pods that can be numerous and short-lived. Instead, your application should output logs 
to stdout and stderr. The kubelet running on each Kubernetes node will collect the stdout and stderr 
of each running pod and combine them into a log file that is managed by Kubernetes. Kubernetes 
will automatically manage logs for each container in a pod and restrict the log file size, with most 
installations keeping the most recent 10Mb of logs.

https://www.bluematador.com/


Kubernetes for Startups
Learn more: bluematador.com

23

Viewing Logs
Pod logs can be accessed using kubectl log. By using kubectl you avoid accessing individual nodes 
to access the logs for pods running on those nodes, and are able to view logs from pods running on 
different nodes in real time. Here are a few examples of using kubectl to view logs for a pod:

View all available logs for a pod:

 kubectl logs <pod> 	

View logs for the last hour for a pod:

 kubectl logs --since=1h <pod>	

View logs and then follow the live stream of logs for a pod:

 kubectl logs -f <pod> 	

View logs for a specific container of a pod in another namespace

 kubectl -n <namespace> logs <pod> -c <container> 	

View logs for a random pod in a deployment:

 kubectl logs deployment/<deployment> 	

These options can be combined and then used with grep to easily filter logs. Here is an example 
looking for recent exceptions on a pod

 kubectl logs --since=1h -f <pod> | grep Exception	

As you can see, kubectl logs is limited to viewing a single pod’s logs at a time. This can be fine for 
quick debugging or smaller systems, but eventually you will want a quick way to live-tail logs from many 
pods. This is where kubetail comes in. Kubetail is a small binary that essentially runs kubectl logs -f 
on multiple pods and combines the log data into a single stream. Kubetail supports many of the same 
options as kubectl, and the basic usage will cover most cases:

View logs for all pods with “my-app” in their name:

 kubetail my-app	

View 15 minutes of logs for “my-app”:

 kubetail my-app -s 15m   	

https://www.bluematador.com/
https://github.com/johanhaleby/kubetail


Kubernetes for Startups
Learn more: bluematador.com

24

Centralized Log Management
Viewing logs using kubectl logs or kubetail is very convenient for live log streams, but it does not 
allow you to look at historical log data past a couple of hours or for pods that have been terminated. At 
some point, you will have to implement centralized log management for your Kubernetes logs in order 
to meet security and quality requirements for your organization. 

There are many solutions for collecting pod logs and shipping them to a centralized location, but we will 
focus on one of the most widely-used products to aggregate logs in Kubernetes: fluentd. Essentially, 
fluentd acts as a middleware that collects and parses logs from many sources, and then ships them to 
one or multiple destinations. Fluentd has a huge amount of plugins available and is flexible enough to 
collect and parse essentially any log type from any location, and send them to any other location. 

In a Kubernetes cluster, we rely on fluentd to collect the pod logs stored on the node filesystem, parse 
them from various formats (json, apache2, mysql, etc.) and ship them to a logging provider so they 
can be searched. This is accomplished by running a Fluentd DaemonSet. This DaemonSet runs a pod 
that collects logs from kubelet, the Kubernetes API server, and all of your running pods on each node. 
These logs are buffered in the fluentd pods and then sent to wherever you want logs stored: Amazon 
S3, Elasticsearch, or a third party log management tool.

https://www.bluematador.com/
https://www.fluentd.org/
https://www.fluentd.org/plugins


Kubernetes for Startups
Learn more: bluematador.com

25

You should not store your Kubernetes logs in the same Kubernetes cluster that generates the logs. 
Running your own Elasticsearch setup tends to be tedious and time consuming when issues do occur, 
and running it inside the same cluster that generates logs can put you in a bad spot. If your cluster 
begins experiencing issues, your Elasticsearch setup will likely also be affected. Running queries in 
Elasticsearch can put extra strain on your nodes that are already having issues. Additionally, managing 
disk space, retention, and access to a self-hosted Elasticsearch cluster likely takes valuable time away 
from your product development, and is best left to log management companies. 

Here are a few providers, in no particular order, that offer support for Kubernetes logging in some 
fashion, and some of them even have free tiers for smaller amounts of log data!

●	 Sumologic
●	 LogDNA
●	 Logz.io
●	 Splunk
●	 Elastic

If you insist on keeping the logs within your infrastructure instead of using a third party, there are many 
blogs detailing this setup: 

●	 Logging in Kubernetes with Elasticsearch, Kibana, and Fluentd
●	 How To Set Up an Elasticsearch, Fluentd and Kibana (EFK) Logging Stack on Kubernetes

 
Whether you use a third party provider to store your logs, or run your own Elasticsearch setup, you will 
likely need to configure your fluentd pods to collect and parse logs that are specific to your application. 
The fluentd Quickstart Guide is a great resource to understand how fluentd works and to find ways to 
configure sources, filters, and outputs.

https://www.bluematador.com/
https://www.sumologic.com/
https://logdna.com/
https://logz.io/
https://www.splunk.com/
https://www.elastic.co/
https://mherman.org/blog/logging-in-kubernetes-with-elasticsearch-Kibana-fluentd/
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes
https://docs.fluentd.org/v1.0/articles/quickstart


Kubernetes for Startups
Learn more: bluematador.com

26

What Not To Do (Yet)
 

We’ve covered Kubernetes components, how to create a Kubernetes cluster, building and deploying 
your application to Kubernetes, securing your cluster, and how to use monitoring and logging tools to 
stay on top of your application and cluster. Since Kubernetes is new, there are tons of related topics, 
articles, blogs, how-to’s, and documentation for all kinds of features that are really exciting. 

For a startup that is just trying to get their business going, many of these topics can lead you astray 
from the primary goal of running your application, and they should only be implemented as needed. 
Let’s go over a few of these and how and when they can fit into your organization.

Config Management
When you are just starting up, it is usually easier to just run one-line commands and configure things 
on the fly. For any projects that you expect to last, you will want to consider how you are organizing and 
keeping track of changes to your infrastructure, and that includes your Kubernetes components. 

All Kubernetes components can be expressed in either JSON or YAML in manifest files. These can be 
organized in a file structure that makes sense to you, and will allow you to recreate your Kubernetes 
components in the event of a failure. Kubectl allows you to specify a filename for creating or updating 
resources using manifest files like so:

 kubectl create -f my_app_deployment.yaml 	

If you need to edit a resource, you can instead edit the YAML manifest file and then update using the file:

 kubectl apply -f my_app_deployment.yaml 	

You can then store these files in a git repository, and commit changes to these files to your git history. 
In this way you can easily look at how your environment has changed over time, replicate your entire 
setup, and eventually create automated workflows based on changes to these files.

Another commonly used tool for managing Kubernetes is helm. Helm essentially acts as a repository 
for creating and managing Kubernetes resources from the community, and you can also use it for your 
own resources. A lot of helm users like the ability to use templates for Kubernetes resources which can 
speed up deployment for apps across multiple environments such as dev, QA, and production. One 
criticism is the added complexity, and the tiller process which must run to keep configuration in sync. In 
any case, using either of these methods is better than having no control and history of your Kubernetes 
configuration changes.

https://www.bluematador.com/
https://helm.sh/


Kubernetes for Startups
Learn more: bluematador.com

27

Continuous Integration/Deployment
CI/CD is the ultimate goal of every engineering organization these days. The ability to fully automate 
the building, testing, and deployment of your application sounds amazing on paper, but for a startup it 
can be an early death sentence. Early on in your application’s lifecycle, you will be creating features, 
reworking the entire system, and writing bugs daily. Spending hours (which will turn into days) to try and 
automate a build system for something that is constantly evolving is a poor use of your time early on. 

The right time to invest in an automated build system depends on your team. When building and 
deploying is a noticeable drain on your time, and you have a few days of free time to spend on it, 
you should at least invest in an automatic build system. Recognize that you can do automatic builds 
without spending even more time on automatic deploys, and you should do so. Until you are extremely 
confident that your automated tests and builds are 100% trusted, we do not recommend doing 
automatic deploys into a Kubernetes cluster.

When you do decide to automate your build and deploy system, Jenkins is one of the most popular 
open-source build tools, and it can be integrated with Docker and Kubernetes to automate your build. 
If you are already familiar with Jenkins, then this is the approach we recommend. Other people have 
written detailed guides for integrating Jenkins into a Kubernetes pipeline, so we will defer to them.

If you are not familiar with Jenkins, then you can look at the free offerings of TravisCI and CircleCI. Both 
of these SaaS products offer ways to build your docker images automatically and they have reasonable 
paid plans for when you are at a scale that requires it.

It can be convenient to run Jenkins or another open-source solution inside of your production 
Kubernetes environment, but it is not recommended. If your production cluster is having issues, you do 
not want to be in a position where you cannot build or deploy your application. Treat your build system 
as a first-class citizen in the same way you do for your log management and alerting system. At the 
very least, have a backup method for building and deploying that you test regularly in case your primary 
method is unavailable.

Autoscaling
Another popular feature of Kubernetes is the ability to both vertically and horizontally autoscale your 
pods and nodes. One of the advantages of Kubernetes is definitely the ability to abstractly run your 
microservices in the cluster without worrying about resources, but autoscaling in the early stages 
of your application is probably unnecessary and can become expensive. If your app is not seeing 
consistent week-over-week growth then it is likely easier to just slightly over-provision your cluster 
and pods and monitor things manually until you can put in the time to set up autoscaling. Scaling up 
in Kubernetes the “manual” way is generally pretty easy if you’ve been following this guide. You can 
quickly add more nodes and increase the size of your deployment when you need it, you just have to 
set up some basic alerts to tell you when CPU and memory utilization are high in your cluster.

https://www.bluematador.com/
https://jenkins.io/
https://code-maze.com/ci-jenkins-docker/
https://travis-ci.org/
https://circleci.com/
https://github.com/kubernetes/autoscaler


Kubernetes for Startups
Learn more: bluematador.com

28

Service Mesh
Service meshes are the next big thing after Kubernetes. The idea behind a service mesh is that at a 
certain scale, it becomes difficult to manage dozens of microservices in production and understand 
how they interact with each other. A service mesh can provide you with performance metrics, service 
discovery, load balancing, failure recovery, deployment strategies, end-to-end authentication, and many 
other features that make life easier for large deployments. However, these features come at a cost. 

There is a learning curve to expressing your application as a service mesh and a literal performance 
cost since it sits between all of your services to gather request metrics. Implementing a service mesh is 
probably a bad call until you have a team dedicated to DevOps, or infrastructure, or at least SRE that 
can actually see the value it provides.

Istio is one of the most popular service meshes currently, and integrates tightly with Kubernetes. It has 
all of the features that are promised of a service mesh, including interesting deployment techniques that 
allow for canary rollouts, A/B testing, fault injection, and circuit breaker patterns. Keep an eye on istio 
as you scale your application into multiple regions and achieve CI/CD as a way to help you stay on top 
of what will likely become a very complex Kubernetes setup.

https://www.bluematador.com/
https://istio.io/docs/concepts/what-is-istio/


Kubernetes for Startups
Learn more: bluematador.com

29

MAKE MONITORING EASIER
START YOUR FREE TRIAL TODAY

START YOUR FREE TRIAL

Alerts without the toil.
The typical, manual monitoring approach 
requires significant time and toil to manage 
every alert on every resource. Blue Matador 
eliminates the need to manually set up alerts 
by automatically configuring full monitoring 
coverage out-of-the-box.

Deploy faster, rest easier.
Agile teams are looking to rapidly deliver 
features and delight customers, but that leaves 
little time to configure proper alerting. Blue 
Matador supports agile teams deploying multiple 
times per day by ensuring that they will be 
alerted of any potential issues.

Know about critical 
production issues.
Issues in your infrastructure can pop-up at any 
time and unless you create alerts for each event 
and resource, you will be caught unaware. Blue 
Matador identifies previously unknown issues, 
ensuring you see the problems first—instead of 
hearing about them from your customers.

https://www.bluematador.com/
https://app.bluematador.com/ur/register
https://app.bluematador.com/ur/register
https://app.bluematador.com/ur/register
https://app.bluematador.com/ur/register


https://app.bluematador.com/ur/register

